GANPAT UNIVERSITY

B. Tech. Semester: IV (EC) Engineering Regular Examination April – June 2017

2EC403: Analog Electronics

	m.	2EC403: Analog Electronics	
	Time	e: 3 Hours	
		Instruction: 1. Attempt all questions. 2. Answers to the two sections must be written in separate answer books. 3. Figures to the right indicate full marks. 4. Assume suitable data, if necessary.	: 60
		SECTION-I	
	1 (A)	Derive input resistance R _{if} , Output resistance R _{of} without load resistance and output resistance R' _{of} with load resistance of current shunt feedback amplifier with negative feedback.	t 7
	(B)	with feedback. Calculate the percentage of output which is feedback to input OR	3
1		and compare the characteristics.	5
	(B)	Derive Av, Avf, Rif, Rof and R'of equation of the emitter follower circuit.	5
2	(B)	Draw functional block diagram of IC 555 timer and explain function of each pin. Write the condition of oscillation in feedback oscillators.	6 2
	(C)	Define the negative feedback and derive expression for transfer gain of amplifier with negative feedback.	2
		OR	
2	(A) (B)	Using block diagram explain the working principle of shunt voltage regulator. Draw and explain Oscillator with RC feedback circuits.	5
3	(A)	Explain working of a stable multivibrator design using timer IC-555 in detail. Write the T_{on} , T_{off} and duty cycle equation.	7
	(B)	Define following voltage regulators terms with equation. (i) Load regulation (ii) Line regulation	3
		SECTION-II	
4	(A)	Draw and explain first order low pass butterworth filter design using Op-amp. Also derive its gain equation as a function of frequency.	6
	(B)	What are the characteristics of an ideal on-amp?	4
4	(A)	Design first order high pass butterworth filter using Op-amp have a cutoff frequency of 1KHz with a passband gain of 2.	4
	(B)	Define following electrical parameters of Op-amp. (i) Input offset voltage (ii) input resistance (iii) CMRR (iv) Slew rate	5
		()	

5	(A)	Draw and explain averaging amplifier and summing amplifier design using Op-amp in noninverting configuration.	1
	(B)	Draw and explain voltage follower and inverter circuit design using Op-amp.	4
		OR	
5	(A)	Draw and explain sawtooth wave generator circuit design using op-amp.	-
	(B)	Draw and explain noninverting amplifier with facility is	5
	(-)	Draw and explain noninverting amplifier with feedback design using Op-amp. Also derive its close loop voltage gain equation.	5
6	(A)	Draw and explain the integrator circuit design using op-amp.	_
	(B)	Write a short note on different types of active filters and its response.	5
	(-)		5
		END OF PAPER	