Seat N	lo:	CHARLES THE PARTY OF THE PARTY
--------	-----	---

GANPAT UNIVERSITY B. TECH SEM. V ELECTRONICS & COMMUNICATION ENGINEERING **EXAMINATION NOV/DEC-2011** EC 502 ELECTROMAGNETICS THEORY

TIME: 3 HOURS

TOTAL MARKS: 70

INSTRUCTIONS:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

		awayiliyandinare (in siyasi yan sin si kati kan kan Arayilatian	
0 m	(A)	Given the two vectors, $\overline{r_a} = 2a_x + 3a_y - 6a_z$ and $\overline{r_b} = 2a_x + 3a_y + 3a_y + 3a_z$	6
Que1	(A)	$5a_z$ and point C(1, 2, 6), find (a) r_{ab} (b) Magnitude of $\bar{r_a}$ (C) Unit vector from C towards A. Transform the following vector to spherical co ordinate at the point	6
	(B)	specified: (a) $5a_x$ at B(r = 4, θ = 25°, \emptyset = 120°), (b) $4a_x - 2a_y - 4a_z$ at P(x = -2, y = -3, z = -4).	
		OR	,
Que1	(A)	The three vertices of a triangle are located at A(6,-1,2), B(-2,3,-4), C(-3, 1, 5). Find (a) R_{ab} (b) R_{ac} (c) the angle θ_{BAC} at vertex A.	6
nes-2 - ti		C(-3, 1.5). Find (a) Rab (b) Rac (c) the angle Ball (b) Rac (c) the angle Ball (c) the an	6
a Ins	(B)	Transform Cartesian cooldinate into spread by	6
Que2	(A)	Transform Cartesian coordinate in a Calculate E at M(3, -4, 2) in free space caused by (a) charge $Q_1=2$ µc at $P_1(0,0,0)$	
	(B)	(a) charge $Q_1 = 2 \mu c$ at $P_2(-1, 2, 3)$ (b) charge $Q_2 = 3 \mu c$ at $P_2(-1, 2, 3)$ Let $\mathbf{D} = (2/z^2) (yz\mathbf{a}_x - xz\mathbf{a}_y - 2xy\mathbf{a}_z) c/m^2$ use the gauss's law to determine the charge enclosed in cubical region $2 < x, y, z < 3$.	5
A all	- man	in the formation of the second	
Oue2	(A)	Let $\mathbf{D} = (8x + 4x3)\mathbf{a}_x - 2y\mathbf{a}_y + 2z\mathbf{a}_z \text{ c/m}^2$ use the gauss's law to determine	6
Que		the charge enclosed in cubical region $-a < x, y, z < a$.	5
	(B)	the charge enclosed in cubical region a by the charge enclosed in cubical region a by a	6
Que-	,	An electric field is given as $E = 6y 2a_x + 5a_y + 5a_y - 2a_z$ µm. find the incremental path is represented by $dl = -3a_x + 5a_y - 2a_z$ µm. find the work done in moving a 2µc charge along this path if location of path is at	
		(a) $P_a(0,2,5)$ (b) $P_b(1,1,1)$	6
	(B	Define the following terms: (i) Current density (ii) Electric flux density (ii) volume charge density	

SECTION-II

- Que.-4 (A) What Maxwell equations stand for? Also derive them for time varying field. 6
 (B) A loop of wire is constructed of three straight segments connecting (0,0,0) to (0.6,0,0) to (0.4,1,0.7) to (0,0,0). A current of 8 mA is in the \$\bar{a}_x\$ direction in the first segment. Given a uniform magnetic flux density \$\bar{B} = 0.2\bar{a}_x 0.1\bar{a}_y + 0.2\bar{a}_z\$ T. Find (a) the force on the segment extending from (0,0,0) to (0.6,0,0); (b) the total force on the loop; (c) the torque on the loop about an origin at (0,0,0).
- Que.-4 (A) Briefly explain the boundary condition of magnetic field.

 (B) Let $V_m = 2x^2 + 4x 2y^2$ A in a certain region of free space. Find the vector force exerted on a wire segment in this region if it extends from the origin to; (a) $P_A(1, 0, 0)$ and carries 5A in the $\overline{a_X}$ direction; (b) $P_B(0, 0, 0)$ and carries 5A in the $\overline{a_Z}$ direction; (c) $P_C(0.6, 0.8, 0)$ and carries 5A away from the origin.

Oue.-5

(A) Derive the point form of Ampere's Circuital law.

(B) By expanding equation $\nabla \times \nabla \times \overline{A} = \nabla(\nabla * \overline{A}) - \nabla^2 \overline{A}$ in Cartesian 6

Coordinates, show that $\overline{\nabla^2 A} = \overline{\nabla^2} A_x \overline{a_x} + \overline{\nabla^2} A_y \overline{a_y} + \overline{\nabla^2} A_z \overline{a_z} \text{ is correct.}$

OR aniwoll

Que.-5 (A) State and explain the Biot-savarat law, Ampere's circuital law.

(B) Evaluate both sides of stoke's theorem for the field

6

H= $(\frac{y^2z}{x})$ $\overline{a_x} + (\frac{0.5y^2z^2}{x^2})$ $\overline{a_z}$ And find current in the $\overline{a_y}$ direction crossing the square in the plane y=2 bounded by x=z=1 and x=z=2.

- Que.-6 (A) Given points A(1,2,4), B(-2,-1,3), and C(3,1,-2), let a differential current element with 1 = 6A and magnitude of $dL = 10^{-4}$ m be located at A. The direction of dL is from A to B. Find dH at C.
 - (B) There are two differential current filaments. The filaments 1 is $l_1 \overline{dL_1} = -3\overline{a_y}$ (A.m) at $P_1(5, 2, 1)$ and filament 2 is $I_2 \overline{dL_2} = -4\overline{a_z}$ (A.m) at $P_2(1, 8, 5)$. Determine the differential force on filament 2.
 - A current density $6 \overline{a_x}$ A/m lies in the Z= 0 plane and a current filament is Located at Y= 0, Z = 4m. Determine the current I and its direction if $\overline{H} = 0$ at point (0, 0, 1.5m).

End of Paper