Seat No:__

GANPAT UNIVERSITY

B.Tech Semester V Electronics & Communication Engineering Regular Examination Nov-Dec 2012 2EC506 Electronic Measurement Techniques

Max. Time: 3 Hrs.]

[Max. Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

Que-1	(A)	Draw and explain basic heterodyne wave analyzer and RF heterodyne wave analyzer.	6
	(B)	Explain Liquid Crystal Display in detail with its features.	6
	(A)	Explain Horizontal deflection system in brief.	6
	(B)	Write a short note on Electro Luminescent Display and Liquid Vapor Display.	6
Que-2	(A)	Convert a basic D'Arsonval movement with an internal resistance of 50Ω and full scale deflection current of 2mA into a multi range dc voltmeter with a voltage ranges of 0-10V, 0-50V, 0-100V and 0-250V. Find value of R_1 , R_2 , R_3 and R_4 . Refer Fig 1.	6
	(B)	Explain vertical deflection system in brief. OR	5
	(A)	For the following given data calculate Arithmetic mean, deviation of each value, algebraic sum of the deviations, average deviations and standard deviation. Given Data: 59, 51.5, 46.9, 47.8, 53.2, 55.	6
	(B)	Draw and explain the working of electrodynamo meter.	5
Que-3	(A)	Define following terms: 1. Measurement 2. Precision 3. Accuracy 4. Resolution	4
	(B)	Draw and explain the block diagram of spectrum analyzer.	4
	(C)	 Justify following statements: 1. "Systematic errors should be small compared to random errors." 2. "Precision is a necessary but not sufficient condition for accuracy." 	4

[Page Turn Over]

SECTION-II

- Que-4 (A) Draw block diagram of general purpose oscilloscope. Find minimum distance L, that will allow full deflection of 4cm at the oscilloscope screen with a deflection factor of 100V/cm and with an acceleration potential of 2000V?
 - (B) Explain Capacitive, Piezoelectric and inductive transducers.

OR

6

5

4

4

- (A) Prove that the path of electron travelling through an electric field of a 6 constant intensity and entering the field at right angles to the lines of flux is parabolic.
- (B) What is the difference between active transducer and passive transducers? Draw different types of gage configuration and derive expression for the gage factor K in terms of Poisson's ratio.
- Que-5 (A) State the important features of instrumentation amplifier. Explain 6 instrumentation amplifier and derive expression for voltage gain.
 - (B) How Frequency, Phase angle, time delay and signal origin can be 5 determined using CRO? Explain each with example.

OR

- (A) State the measurement errors of Wheatstone bridge. Explain operation of 6 Kelvin double bridge in detail.
- (B) Draw and explain microprocessor based Ramp type DVM.
- Que-6 (A) A resistance strain gage with gage factor of 2 is fastened to a steel member 4 subjected to a stress of 1050 kg/cm². The modulus of elasticity of steel is 2.1×10^6 kg/cm². Calculate the change in resistance, ΔR of the strain gage element due to the applied stress.
 - (B) Write a short note on Flash A to D converter.
 - (C) Explain operation of Wien bridge. List down its application.

