[Max. Marks: 70]

3

2

GANPAT UNIVERSITY

B. TECH. SEMESTER V (ELECTRONICS & COMMUNICATION ENGINEERING) **REGULAR EXAMINATION, NOV-DEC 2013 2EC502 ELECTROMAGNETIC THEORY & WAVE PROPAGATION**

[Max. Time: 3 Hrs.]

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

- (A) Explain the line charge density. Drive the expression of electric field intensity 4 Que.-1 for the line charge configuration. 4
 - (B) Given points A(2,5,-1), B(3,-2,4) and C(-2,3,1) and:
 - (a) $R_{AB} \cdot R_{AC}$
 - (b) The angle between $\overline{R_{AB}}$ and $\overline{R_{AC}}$
 - (c) The length of projection of R_{AB} on R_{AC}
 - (d) The vector projection of R_{AB} on R_{AC}
 - (C) An infinitely long uniform line charge is located at y=3, Z=5. If $\rho_l = 30$ nC/m. Find \bar{E} at
 - (a) The origin (b) $P_A(0,6,1)$

OR

- Que.-1 (A) Explain the surface charge density. Derive the expression of electric field intensity due to the surface charge configuration.
 - (B) In free space, let $Q_1 = 10nc$ be at $P_1(0, -4, 0)$ and $Q_2 = 20nc$ be at $P_2(0, 0, 4)$
 - (a) Find \overline{E} at the origin
 - (b) Where should a 30 nC Point charge be located so that $\vec{E} = 0$ at the origin?
 - (C) A uniform line charge density of 5nC/m is at y=0, z=2m in free space, while -4 5nC/m is located at y=0, z=-2m. A uniform surface charge density of 0.3 nC/m² is at y=-0.2m. Find $|\overline{E}|$ at the origin. 6
- (A) Explain in brief Que.-2
 - 1. Gauss's law
 - 2. Concept of electric flux
 - 3. Electric field intensity
 - (B) A point charge of 20 nc is located at (4, -1, -3) and a uniform line charge of -25nc/m is lies along the intersection of plane X=-4 and Z=6. Calculate the \overline{D} at (3, 1, 0).
 - Explain the vector projection and scalar projection in terms of dot product between two vectors

OR

Derive the equation of the energy density which is stored in the electrostatic field.

- (B) Let $\overline{E} = (-6y/x^2)\overline{a_x} + (6/x)\overline{a_y} + 5\overline{a_z}$ V/m and calculate: (a) V_{PO} given P(-7,2,1) and Q(4,1,2) (b) V_P if V=0 at Q
- (C) The region y<0 contains a dielectric material for which $\varepsilon R1 = 2.5$, while the region y>0 is characterized by $\epsilon R^2 = 4$. Let $\overline{E_1} = -30\overline{a_x} + 50\overline{a_y} + 70\overline{a_z}$ V/m and find:

4

4

(a) D_{N2} ; (b) D_{t2} ; (c) $\overline{D_2}$; (d) θ_2

- (A) Derive the expression of potential difference V_{AB} in the field of Que.-3 (1) line charge (2) Point charge.
 - (B) Given two vectors $\overline{r_A} = -\overline{a_x} 3\overline{a_y} 4\overline{a_z}$ and $\overline{r_B} = 2\overline{a_x} + 2\overline{a_y} + 2\overline{a_z}$ and point C(1,3,4) find: (a) $\overline{R_{AB}}$; (b) $|\overline{r_A}|$; (c) $\overline{a_A}$; (d) a unit vector directed from C 4 toward A. 4
 - (C) Convert $\overline{A} = 3 \overline{a_x} + 4 \overline{a_y} + 5 \overline{a_z}$ at the point (x=3, y=4, z=5) in spherical co-ordinates.

SECTION-I

Que 1	(A)	Derive all the Maxwell's equations for a static field.	6
Que4	(A) (B)	What is the use of Maxwell's equations?	2
	(D)	Derive the wave equation in magnetic as well as electric field for a lossy media.	4
	(C)	OR	
	(Derive the point form of Ampere's circuital law.	6
Que4	(A)	Derive the point form of rimpered bed $\overline{H} = 6xy \overline{a_x} - 3y^2 \overline{a_y}$ and the rectangular path	6
	(B)	Verify stokes incorent for the flow $z = 0$ Let the positive direction of ds be $\overline{a_z}$.	
	(1)	around the region, 22x29, 12921, 2 other the properties and normal component of a vector field changes	6
Que5	(A)	Explain in detail, now the tangentite dium to another.	
	(\mathbf{D})	Derive an expression for the force experienced by a differential element placed in a	5
	(a)	magnetic field	
w .onen		OP	
n 1.0 10		OR Dist Severic law	6
Que5	(A)	What is Electromagnetic Theory? Explain the Blot Savart's law.	2
	(B)	Explain the salient features of E layer of lonosphere.	3
	(C)	Explain the Vector magnetic potential in detail.	6
Que6	(A)	A 9500 MHz uniform plane wave is propagating in polystyrene. If amplitude of electric	0
		field intensity is 20 V/m and the material is assumed to be reserved.	
		(i) Phase constant (ii) Intrinsic impedance	
	also a	(N) Propagation constant (vi) Amplitude of vector H	
		(v) Propagation constant for polystyrene $fr = 2.56$ and $\mu r = 1$)	
		(ior porystyrene, er die o and pr	2
	(R)	Explain the application of Electromagnetic theory.	4
	C	Derive the expression for Gauss law in a magnetic field in differential as well as in	4
	9	point form.	

End of Paper

Page 2 of 2