Student Exam No:

GANPAT UNIVERSITY

B. TECH. SEMESTER V (ELECTRONICS & COMMUNICATION ENGINEERING) REGULAR EXAMINATION, NOV-DEC 2014 2EC502 ELECTROMAGNETIC THEORY & WAVE PROPAGATION

[Max. Time: 3 Hrs.]

[Max. Marks: 70]

4

4

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

- Que.-1 (A) Derive the equation of \overline{E} for the Electric Dipole.
 - (B) Given points A(2,5,-1), B(3,-2,4) and C(-2,3,1) and:
 - (a) $\overline{R_{AB}} \cdot \overline{R_{AC}}$
 - (b) The angle between $\overline{R_{AB}}$ and $\overline{R_{AC}}$
 - (c) The length of projection of $\overline{R_{AB}}$ on $\overline{R_{AC}}$
 - (d) The vector projection of $\overline{R_{AB}}$ on $\overline{R_{AC}}$
 - (C) Transform $\overline{A} = 4 \overline{a_x} 2\overline{a_y} 4\overline{a_z}$ in spherical Co ordinate system. Also evaluate it at 4 P(x=2, y=3, z=5).

OR

- Que.-1 (A) What is the line charge density? Derive the expression of electric field intensity due to 4 the line charge configuration.
 - (B) An infinitely long uniform line charge is located at y=3, Z=5. If ρ_l = 30nC/m. Find \overline{E} at (a) The origin
 - (b) $P_A(0,6,1)$
 - (C) Two point charges of 6 nC are located at the points (2,-3,-4) m. and a charge of 8 nC is 4 located at (-2,3,4) m. Find electric field intensity at (3,3,3) m.
- Que.-2 (A) Find the flux density at a point A(6,4,-5) caused by
 - (i) A point charge of 40mc at the origin
 - (ii) A uniform line charge $\rho_l = 10 \, \mu c/m$ on the Z-axis
 - (iii) A uniform charge density $\rho_s = 30 \ \mu c/m^2$ at a plane X=8
 - (B) Show that electrostatic energy stored in a parallel plate capacitor is given by $\frac{1}{2}cv^2$ 3 joules
 - (C) Let $\overline{D} = (8x + 4x^2)\overline{a_x} 2y\overline{a_y} + 2z\overline{a_z} c/m^2$ evaluate both sides of the divergence 4 theorem for the region defined by -a < x, y, z < a

(A) Explain

Que.-2

1. Electric Flux 2. Electric flux density

- 3. Surface charge density 4. Work done
- (B) Define the Current Density and also explain the continuity equation for current in detail. 3

- (C) Let $\overline{E} = \left(-\frac{6y}{x^2}\right)\overline{a_x} + \left(\frac{6}{x}\right)\overline{a_y} + 5\overline{a_z}$ V/m and calculate (a) V_{PQ} given P (-7,2,1) and Q (4,1,2) (b) V_P if V=0 at Q.
- Que.-3 (A) Derive the equation of the energy density which is stored in the electrostatic 4 field.
 - (B) Four infinite uniform sheets of charge are located as follows: 20 pC/m² at y=7, -8 pC/m² at y=3, 6 pC/m² at y=-1 and -18 pC/m² at y=-4. Find E at the point :

4

4

の時間に使用的ない

(C) Derive the boundary condition at a conductor free space boundary.

SECTION-II

Que4	(A)	Derive an expression for the Displacement current density for a time varying	
•	(B) (C)	field. Derive the Lorentz Force equation. State and prove stokes theorem.	3 3
Que4	(A) (B)	Prove the relation, $\nabla \times \overline{H} = \overline{J}$ State Poynting theorem and derive an expression for the value of instantaneous power flow in a definite given volume.	6 6
Que5	(A)	Describe the relation between the vector components when the vector is going	5
		from one medium to another.	3
	(B)	Derive the solution of the Wave equation for a lossy medium.	3
	(C)	What is Vector Magnetic potential? Mention any one use of it. OR	5
Oue5	(A)	Derive all the Maxwell's equations for a free space medium.	5
Quere	(B)	What is Skin effect? Explain in detail.	
	(C)	What is the Gauss law for the magnetic field?	5
Que6	(A)	Answer the following:	0
		 (i) How the Depth of penetration and the frequency does are related? (ii) What does the equations of Magnetic boundary conditions signifies? (iii) Define a Wave front. (iv) What does the Poynting vector signifies? (v) Write down the basic motor equations. 	
- divers		(vi) What does the Maxwell's equation describe about?	A
	(B)	The electric field vector in free space is given by	44
		$\vec{E} = E_m \sin\alpha \cos(\omega t - \beta z) \bar{a}_y$ (V/m). Find the corresponding <i>H</i> .	4
	(C)	Mention few characteristics of E layer of the Ionosphere.	ha

End of Paper

Page 2 of 2