GANPAT UNIVERSITY

B.TECH SEM. V (EC) ELECTRONICS & COMMUNICATION ENGINEERING CBCS REGULAR EXAMINATION, NOV/DEC-2014 (2EC 503) POWER ELECTRONICS & APPLICATIONS

TIME: 3 Hrs.]

[TOTAL MARKS: 70

Instructions:

1. Attempt all questions.

- 2. Answers to the two sections must be written in separate answer books:
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

1	(A)	Draw the structure of SCR and two transistor equivalent of SCR. Explain operation of SCR	6
	(B)	with two transistor analogy. For a particular circuit total voltage and current ratings are 7.5 KV and 1000 Amp. SCRs with a rating of 500V and 75 Amp are available. Assume derating factor of 14%. Calculate the number of SCRs connected in series and in parallel required to handle the given source	4
	(0)	voltage and current.	2
	(C)	Define : Pulse transformer, Delay angle OR	
1	(A)	Draw and explain the necessity of static and dynamic equalizing circuits for series connected SCRs? Derive relations used for determining the values of shunt resistor R and	8
		capacitor C in this circuit.	
	(B)	What is significance of di/dt trating of an SCR? How SCR can be protected against high di/dt? Explain.	4
2	(A) (B)	State different turn on methods. State the merits of gate turn on. Explain the terms: (i) Voltage commutation and (ii) current commutation as applied to forced commutation of thyristor. Describe Class – C type of commutation used for thyristors with appropriate current and voltage waveforms.	4 8
3	(1)	OR	6
2	(A)	Explain the half wave and full wave RC firing circuit.	6
	(B)	Explain the working of a single phase full bridge inverter with resistive load.	·
3	(A)	If a half wave controlled rectifier has purely resistive load of R and delay angle $\alpha = 90^{\circ}$, determine 1. η 2. FF 3. RF 4. TUF	4
	(B)	Explain dual mode dual converter with its block diagram.	4
	(6)	Draw and basic two configurations of UPS.	3

SECTION-II

4	(A)	Classify power electronic converter circuits with their principle of operation, design, components involved and applications.	6
	(B)	Explain reverse recovery characteristics of power diode and relate I _{RM} with Q _R . OR	6
4	(A) (B)	What is a unijunction transistor? Explain its structure and characteristics. Explain power diode with its structure and I-V characteristics. Differentiate power diode types.	6
5	(A) (B)	Draw two transistor equivalent model of GTO and relate IGN with turn off gain. Draw and explain class B and class C chopper.	6
5	(A)	Explain the working of a single phase full wave controlled rectifier using a center tapped transformer with purely resistive load.	4
	(P)	Explain closed loop control of DC drives.	4
	(B) (C)	Draw and explain full wave A.C. Voltage Controller with resistive load including harmonics of output quantities.	4
6	(A)	Write a short note on DC drives.	3
U	(B)	Draw and explain IGBT's operating principle.	3
	(C)	List advantages of induction heating.	3
	(D)	Define channing frequency and duty cycle.	2

END OF PAPER