Student Exam No.

GANPAT UNIVERSITY

B. Tech. Semester: V (Electronics & Communication Engineering) CBCS Regular Examination Nov-Dec 2016 2EC502 Electromagnetic Theory

Time:3 Hours

Total Marks: 60

Instructions: 1. All questions are compulsory.

- 2. Write answer of each section in separate answer books.
- 3. Figures to the right indicate marks of questions.

Section - I

- Que. -1 A State the Biot- Savart's law and derive the equation for the value of the 5 differential amount of the magnetic field intensity.
 - B Derive the Maxwell's equations for a time varying field.

5

OR

- Que. -1 A What is the difference between a static and a time varying field? Derive 5 the equation for the continuity equation of current in a time varying field.
 - **B** Given the vector magnetic potential, $\overline{A} = -r^2/4 \overline{a_z}$ (Wb/m), Determine 5 \overline{B} at (6,25°,2).
- Que. 2 A Explain the different types of electromotive force resulting from 6 Faraday's law.
 - **B** Define the Vector and the Scalar magnetic potential with the required **4** equations.

OR

- Que. 2 A What is Torque? Derive an expression for the torque in a magnetic field B 6 and the magnetic dipole moment.
 - **B** Derive the wave equation for electric and magnetic field if the wave is **4** propagating in a lossless medium.
- Que. 3 B Derive the Magnetic boundary conditions for a vector field travelling 6 from one medium to another.
 - C Define and explain the physical significance of divergence and the curl. 4

Section – II

Que. – 4	A Discuss about the coulomb's law.	3
	B Define the workdone.	2
	C A sheet of Charge $\rho_s = 2nc/m^2$ is present at x=3 in free space is	5
	located at $x=1$ and $z=4$. find (a) the magnitude of the electric field	
	intensity at the origin (b) the direction of \overline{E} at (4,5,6).	

OR

Que. - 4 A Explain the concept of electric field intensity.
B An infinitely long uniform line charge is located at by y=3, z=5. If ρ_L=30nC/m, find Ēat (a) the origin (b) Q_b (0,6,1).
C Define Electric flux with necessary figure.

- **Oue.** 5 A Discuss about the electric flux and electric flux density. Derive the relationship of Electric flux density and Electric field intensity.
 - **B** Let $\overline{D} = y^2 z^3 \overline{a_x} + 2xyz^3 \overline{a_y} + 3xy^2 z^2 \overline{a_z} pC/m2$ in free space. (1) Find 6 the total electric flux passing the surface $x = 3, 0 \le y \le 2, 0 \le z \le 1$ in a direction away from the origin. (2) Find the $|\overline{E}|$ at P (3,2,1) (3) Find the charge contained in an incremental sphere having a radius of 2µm centered at P(3,2,1).

OR

- **Oue.** 5 A Explain the current density. Derive relationship between current density, 5 volume charge and its velocity.
 - **B** If $V = \frac{60 \sin \theta}{r^2}$ V in free space and point P located at r=3m,

$$\theta = 60^\circ$$
, $\phi = 25^\circ$, find (a) V_P (b) E_P (c) dV/dN at P (d) \bar{a}_N at P
(e) ρ_V at P.

A Given points A(2,5,-1), B(3,-2,4) and C(-2,3,1) Calculate: **Oue.** – 6

- (a) $\overline{R_{AB}} \cdot \overline{R_{AC}}$ (b) The angle between $\overline{R_{AB}}$ and $\overline{R_{AC}}$.
- (c) The length of projection of $\overline{R_{AB}}$ on $\overline{R_{AC}}$. (d) The vector projection of $\overline{R_{AB}}$ on $\overline{R_{AC}}$.

B Define: Position vector and Unit vector.

C Differentiate between Electric and Magnetic field.

END OF PAPER

4

5

5

2

3