Student Exam No:

GANPAT UNIVERSITY

B. TECH. SEMESTER VI (ELECTRONICS & COMMUNICATION ENGINEERING) **REGULAR EXAMINATION, MAY-JUNE 2014 2EC601 ANTENNA ENGINEERING**

[Max. Time: 3 Hrs.]

[Max. Marks: 70]

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-

Que1	(A)	What is the broadside array? Derive the expression for the radiation pattern of a broadside array of n elements	6
	(B)	Explain the concept of antenna coupling with necessary equations.	6
Que1	(A)	Explain	6
	(\mathbf{R})	1. Antenna Beam width 2. FBR 3. Antenna Beam Efficiency	6
	(D)	1. Binominal array 2. Pattern multiplication method	. 0
Que2	(A)	Derive maxima, minima and half power point directions with two point sources are fed with currents equal in magnitude but opposite in phase.	5
	(B)	Give the different definitions of Antenna.	3
	(C)	Explain the concept of radiation intensity	3
		OR	
Que2	(A)	Derive the expression of directivity for n-element Broad side linear array	5
	(B)	Explain the classification of Antenna.	3
	(C)	For a source with radiation intensity $U=6\cos\theta$, find the directivity and HPBW, when its pattern is unidirectional.	3
Que3	(A)	Design a four elements broad side array of $\lambda/2$ spacing between elements. The pattern is to be optimum with a side lobe level 18 dB down the main lobe maximum.	5
	(B)	The radiation efficiency of a certain antenna is 95 %. The maximum radiation intensity is 0.5 W/Sr. Calculate the directivity of the antenna if	4
		1. $P_{input} = 0.4 W$ 2. $P_{rad} = 0.3 W$	
	(C)	Explain the different types of antenna polarization.	3
~			
	Z	SECTION-II	

(B)

Que.-4 (A) Briefly explain the log periodic antenna with necessary equations. Derive the equation of maximum power gain in terms of radiation efficiency & 4 Directivity.

- (C) Explain the Yagi-Uda antenna with necessary equations.
 - OR

4

4

4

4

5

3

3

5

3

4

4

4

Que.-4 (A)

Oue.-5

- (A) Prove the equation: $A_{em} = 1.5 \frac{\lambda^2}{4\pi}$
 - (B) Explain the Loop antenna & Rhombic antenna
 - (C) Calculate power gain of a half wave dipole whose ohmic losses and directivity are 7Ω and 1.64 respectively.
- (A) Explain the Helical Antenna & Inverted V-Antenna in details.
 - (B) Explain the Gain measurement by Two antenna method.
 - (C) Explain the method for measurement of antenna beam width

OR

- Que.-5 (A) Explain
 - 1. Feeding techniques of parabolic reflectors
 - 2. Functions of an Antenna
 - (B) Explain the Gain measurement by Three antenna method
 - (C) Explain the corner reflector antenna in detail.
- Que.-6 (A)
- (A) Define self impedance and mutual impedance of antennas.
 (B) An antenna is fed with a voltage source of (100+j80) V with impedance 50 Ω. Calculate radiation efficiency of antenna, real power delivered by source, real power input to antenna, power radiated by antenna if antenna impedance is (71+j25) Ω which includes loss resistance of 1 Ω
 - (C) Explain the various forms of antenna arrays with neat diagrams

End of Paper