Exam No.

GANPAT UNIVERSITY B. TECH SEM. VI ELECTRONICS & COMMUNICATION ENGINEERING CBCS REGULAR EXAMINATION APRIL-JUNE 2017 (2EC602) OPTICAL FIBER COMMUNICATION

TIME: 3 HOURS

TOTAL MARKS: 60

5

INSTRUCTIONS:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer-books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

Q-1	(A)	Define following terms in detail: (1) Numerical Aperture	4
		(2) Normalized Frequency	
	(B)	Explain in detail about material absorption losses in optical fibers.	5
	(C)	Define phase velocity.	1
		OR	
0-1	(A)	Define following terms in detail:	4
		(1) Critical Angle	
		(2) Acceptance Angle	
	(B)	Explain in detail about linear scattering losses in optical fibers.	5
	(C)	Define group velocity.	1
Q-2	(A)	Why multimode graded index fiber is better than multimode step index fiber? Give the detail of graded index fiber with necessary diagram.	5
	(B)	A single-mode step index fiber has a core diameter of 10 μ m and a core refractive index of 1.49. Estimate the shortest wavelength of light which allows single-mode operation when the relative refractive index difference for the fiber is 1%.	5
		OR	
Q-2	(A) (B)	What are the advantages of optical fiber communication? Explain in detail. A graded index fiber with a parabolic index profile supports the propagation of 560 guided modes. The fiber has a numerical aperture in air of 0.3 and a core diameter of 65 μ m. Determine the wavelength of the light propagating in the fiber. Further estimate the maximum diameter of the fiber which gives single-	5 5
0.1		Drow optical fiber communication transmission link and explain about each	5

- Q-3 (A) Draw optical fiber communication transmission link and explain about each component used in it?
 - (B) Explain following in detail:
 - (i) Intramodal dispersion (ii) Intermodal dispersion

SECTION-II

Q-4	(A)	Describe unidirectional path switched SONET / SDH Rings.	5
•••••	(B)	Explain in detail about general applications of optical amplifiers.	5
		OR	
Q-4	(A)	Describe bidirectional line switched SONET / SDH Rings.	5
	(B)	Draw and explain Erbium doped fiber amplifier architectures.	5
Q-5	(A)	Draw and explain edge-emitting double – heterojunction LED.	4
	(B)	A double – heterojunction InGaAsP LED emitting at a peak wavelength of 1310 nm has radiative and non – radiative recombination times of 30 ns and 100 ns respectively. The drive current is 40 mA Find out bulk recombination	4
		lifetime and internal quantum efficiency.	
	(C)	Define responsivity of photo detector.	2
		OR	
Q-5	(A)	What is stimulated emission? Explain about fabry-perot resonator cavity for a LASER diode.	4
	(B)	A silicon avalanche photodiode has a quantum efficiency of 65% at a wavelength of 900 nm. Optical power of 0.5 μ W produces a multiplied photocurrent of 10 μ A. Find out the multiplication M.	4
	(C)	Define quantum efficiency of photo detector.	2
Q-6	(A)	Discuss about Wavelength division multiplexing optical communication system.	5
	(B)	Explain in detail about p-i-n Photodiode.	5

END OF PAPER