GANPAT UNIVERSITY

B.Tech. Semester -VII (EC) Regular Examination, Nov-Dec 2012

Microwave Engineering (EC 704)

Max. Time: 3 Hrs.]

[Max. Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

1	(A)	What are the limitations of conventional tubes at microwave frequencies? Explain it in detail.	6
	(B)	What is velocity modulation? Discuss in detail about two cavity klystron devices.	6
		OR	
1	(A)	With help of Applegate diagram explain about reflex klystron device.	6
	(B)	What do you mean by cross field devices? Discuss about cavity magnetron in detail.	6
2	(A)	Describe how the power of a microwave signals from generator to be measured using calorimetric techniques.	6
		Two (30 dB) identical directional couplers are used in a waveguide to sample incident and reflected powers. The outputs of couplers are found to be 2.5mW and 0.15mW. For this data find the value of VSWR.	
	(B)	Explain measurement method of impedance using Slotted line.	5
		OR	
2	(A)	Explain measurement method of impedance using Reflectometer.	6
	(B)	List out various methods to measure VSWR and explain the double minimum method (for S>10) of measuring VSWR.	5
3	(A)	Calculate the SWR of a transmission system operating at 10GHz.Assume TE_{10} wave transmission inside a waveguide of dimensions a=4cm, b=2.5cm.The distance measured between twice minimum power points=1mm on a slotted line.	4
	(B)	Explain operation of Varactor diode with required details.	4
	(C)	Draw the block diagram of monostatic radar system and classify various radars.	4

6

6

6

6

6

SECTION II

- (A) Determine ρ and S when $Z_0=50\Omega$, $Z_1=100\Omega$. A load impedance of 70-j85 Ω is required to be matched to 50 Ω co-axial lines at 600 MHz. determine distance of stub from load and length of stub using smith chart.
 - (B) What is characteristic impedance & reflection co-efficient? Develop the equivalent circuit of a Transmission Line and derive the basic transmission line equations

OR

- (A) Explain the principle of Rate Race Junction. Determine the scattering parameter for a 10 db directional coupler. The Directivity D=30 db. Designate the ports in main guide is 1 or 2 and the ports in auxiliary guide as 3 or 4. Assume VSWR at each port is 1.0 under matched conditions.
 - (B) Derive the equation for phase velocity, group velocity and cut-off frequency for rectangular waveguide.
- (A) What is principle of H-plane tee and E -plane tee? Determine S-matrix for Magic tee. 6 Also give application of magic tee.
 - (B) A rectangular waveguide has dimensions 2.5x 5 cms. Determine the guide 6 wavelength, phase constant β and phase velocity V_p at a wavelength of 4.5 cms for the dominant mode. Also derive the equation for wave impedance for TE mode in Rectangular waveguide.

OR

- 5 (A) Derive the equation for Electric and magnetic field component in X and Y direction For TE mode in rectangular waveguide.
 - (B) What is VSWR? Derive the equation for input impedance on a transmission line.
 - (A) What is a cavity resonator? Derive the equation for field expression for TM_{mnp} modes 8 in rectangular cavity resonator.
 - (B) What is mean by degenerate mode? A 50Ω lossless line connects a signal of 300khz to 3 a load of 100Ω . If the load power is 50 Mw; determine (1) Vmin and Vmax and (2) impedance at Vmin and Vmax.

END OF PAPER

4

4

5

6

