Seat no.

GANPAT UNIVERSITY

B. Tech. Semester VII Electronics and Communication Engineering Regular Examination NOV/DEC-2012 EC 703 VLSI Technology

Time: 3 Hrs.]

[Total. Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. use following data.

 $\Phi_{F(gate)} = 0.55V, \ kT/q = 0.026V, \ q = 1.6 \times 10^{-19} C, \ \epsilon_0 = 8.85 \times 10^{-14} \ F/cm, \\ \epsilon_{Si} = 11.7 \times \epsilon_0 \ F/cm, \ \epsilon_{ox} = 3.7 \times \epsilon_0 \ F/cm, \ n_i = 1.45 \times 10^{10}/cm^3$

SECTION-I

	1	(A)	Explain Gradual Channel Approximation (GCA) and derive equation for	0
		(R)	Explain following processes for the MOS system with necessary diagram:	6
		(D)	1. Accumulation 2. Depletion 3. Inversion	
			(A) Define tBHLade to SOO the equation for ide (d)	
	1	(A)	Write a short note on MOSFET capacitance	6
		(B)	Draw the following CMOS based circuit :	6
			1. CMOS implementation of the D-Latch	
			2. CMOS AOI realization of the JK latch	
				6
	2	(A)	Give the types of voltage scaling and its effects on different parameters	0
		(B)	Draw the CMOS negative edge-triggered master slave D FF	5
			OR	
	2	(Å)	Implement (A+B)C using cascade domino CMOS logic	3
	-	(II) (R)	Draw the following digital circuit using transmission gate	8
		(D)	1. 2:1 MUX	
			2. 4.1 MUX	
			3 2 input FX-OR gate	
			$A = A D + A^{2}C^{2} + A B^{2}C$	
		(4. F-ADTA C TAD C	
			Design 4 input NAND Gate using pass transistor	6
	3	(A)	What is latch un? Explain Causes of latch-up & how to avoid it.	6
-		(B)	what is fatch up? Explain Causes of fatch up to here	
6				

SECTION-II

	4	(A)	Explain CMOS ring oscillator circuit for three stages	6
		(B)	Calculate the threshold voltage V_{TO} at $V_{SB}=0$, for a polysilicon gate n-	6
			channel MOS transistor, with the following parameter: Substrate doping	
			density $N_A = 10^{16}$ cm ⁻³ polysilicon gate doping density $N_D = 2 \times 10^{20}$	
			cm ⁻³ , gate oxide thickness tox=500Å, and oxide-interface fixed charge	
			density NOX = $4 \times 10^{10} \text{ cm}^{-2}$	
			OR	
	4	(A)	Give comparison of different inverter with necessary diagram.	4
		(B)	Explain channel length modulation effects in NMOS.	4
		(C)	Write a short note on voltage bootstrapping	4
	5	(A)	What is inverter threshold voltage? Explain its effect & derive the	6
			equation $\left(\frac{W}{W}\right) = 2.5\left(\frac{W}{W}\right)$	
		den pa	$(L)_{P}$ $(L)_{N}$	
		(B)	Draw circuit diagram of 3T DRAM cell with its working and related	5
			voltage waveforms.	
	(6)		OR COR	
	5	(A)	Define τ PHL & τ PLH. Derive the equation for delay time(td) and explain	4
			its effect	
		(B)	Draw the following digital circuit using transmission gate	4
			4:1 MUX using 2:1 MUX	
		(C)	write a short note on LOCOS	3
	6	(A)	Optimize stick diagram layout of a complex CMOS logic gate for	6
	v	(11)	V = ((A+B+C)D)' using Fuler path method	0
		(B)	For given below circuit if the=0.5 ns then	6
		(-)	find delay for	U
			(a) Non buffer case	
			(b) Single buffer case	
			(c) Super buffer case	
			2. 4:1 MUX	
			20	
	C	g	(B) What is latch up? Exclude auses of latch-up with with	
			20	
•				
			20	

End of Paper