GANPAT UNIVERSITY

B. Tech. Semester VII Electronics and Communication Engineering CBCS Regular Examination December-2013 2EC703 VLSI TECHNOLOGY

Time: 3 Hours	Total Marks: 70
Instructions:	Total Vial RS: /U
1. Attempt all questions.	
 Answers to the two sections must be written in separate Figures to the right indicate full marks. Use following data. 	answer books.
$\Phi_{\text{F(gate)}} = 0.55 \text{V}, \text{ kT/q} = 0.026 \text{V}, \text{ q} = 1.6 \times 10^{-19} \text{ C}, \epsilon_0 = 8.85 \times 10^{-19} \text{ C}$ $\epsilon_{\text{Si}} = 11.7 \times \epsilon_0 \text{ F/cm}, \epsilon_{\text{ox}} = 3.7 \times \epsilon_0 \text{ F/cm}, n_i = 1.45 \times 10^{10} \text{/cm}$	0 ⁻¹⁴ F/cm,

SECTION-I

1	(A)	Draw schematic and optimize stick diagram layout for following:	6
		(1) Y=(A(D+E)+BC)'	
		(2) 4 input NAND gate	
	(B)	Draw the following digital circuit using transmission gate:	6
		(1) 4:1 MUX using 2:1 MUX	U
		(2) F=AB+A'C'+AB'C	
1	(A)	OR Draw the following CMOS based circuit:	
		(1) CMOS SR latch based on NOR2	6
		(2) CMOS AOI realization of the JK latch	
	(B)	Draw the following digital circuit using Complementary Pass transistor logic:	6
		(1) 2 input AND and NAND gate	en i
		(2) Full adder	
2	(A)	Draw the circuit diagram of a TSPC based rising edge-triggered DFF.	5
	(B)	Using NORA implement the function AB+(C+D)+(EF+G).	6
2	(4)	OR	
2	(A)	Draw 4 stage carry look ahead adder using multiple output domino CMOS gate.	5
	(B)	Explain the concept of charge sharing and explain the method of how to remove it.	3
	(C)	Implement (A+B)C using cascade domino CMOS logic.	3
3	(A)	Write a short note on CMOS ring oscillator	6
	(B)	Which are the two different VLSI design styles? How these design styles affect the	6
		design cycle time and circuit performance? Explain.	U
		/ # # # # # # # # # # # # # # # # # # #	

SECTION-II

4	(A)	Write a short note on short channel effect.	6
	(B)	Explain MOSFET operation in linear and saturation with suitable diagram.	6
		OR	
4	(A)	Write a short note on	6
		(1) Narrow channel effect	
		(2) Constant field scaling	
	(B)	Calculate the threshold voltage V _{TO} at V _{SB} =0, for a polysilicon gate n-channel MOS	6
		transistor, with the following parameter: Substrate doping density N _A =10 ¹⁶ cm ⁻³	
		polysilicon gate doping density $N_D = 2 \times 10^{20}$ cm ⁻³ , gate oxide thickness tox=500Å,	
		and oxide-interface fixed charge density $N_{OX} = 4 \times 10^{10} \text{ cm}^{-2}$	
5	(A)	What is noise margin? Define V _{IH} , V _{IL} , V _{OL} , V _{OH} , V _{TH} .	6
	(B)	Draw voltage transfer characteristics of CMOS inverter, identify critical voltage	5
		points and Find expressions of V _{IL} .	
		eating delegane part grazu o OR (color authorit)	
5	(A)	Draw voltage transfer characteristics of resistive load inverter, identify critical voltage	6
		points and Find expressions of V _{OL} .	
	(B)	Consider the following for inverter design problem:	5
		Given: VDD=5V,kn $\stackrel{>}{\sim}$ 30 μ A/V 2 and VTO,n=1.0V,	
		Find the value of R_L if W/L ratio is 2 and V_{OL} =0.2V.	
6	(A)	Explain working principle of CMOS SRAM cell with necessary circuit diagram and	6
		waveforms for read and write operation.	
	(B)	Explain in detail latch-up.	6

End of Paper