Seat	No	
Scal	INO.	

GANPAT UNIVERSITY

B. Tech. Semester: VII Electronics and Communication Engineering Regular Examination (CBCS) Nov-Dec 2014

2EC704 (A) Embedded Systems

Time: 3 F	lours	Total Marks: 7	70.
Instructio	n· 1	. Attempt all questions.	
mstructio	711. 1 2.	the second to written in congrete answer books	
		Figures to the right indicate full marks.	
	4.		
	т.	Assume surtable duta, it increasing	
		Section- I	
Que. – 1	(A)	List the various application areas of embedded systems and give examples	5
240. 1	(1.4)	for each.	
	(B)	Write short note on following:	5
	()	1. 12C Bus	
		2. Debug port	_
	(C)	Differentiate between hard and soft real time system.	2
		OR	=
Que. – 1	(A)	Discuss about recent trends in embedded systems.	5
	(B)	Explain various processor architectures and also explain DMA.	5 2
	(C)	Can mobile devices be categorized as embedded systems? Discuss.	4
		CT (Countage) Discours with	5
Que. – 2	(A)	Which are the ways to extend the range of Timer/Counter? Discuss with	
		example and necessary diagrams.	4
	(B)	Discuss about serial data transmission using UARTs.	2
	(C)	Define the following terms:	_
		1. Memory write ability	
		2. Storage permanence OR	
Oue 1	(4)	What is the function of watchdog timer in embedded system? Explain in	5
Que. – 2	(A)	detail with example.	
	(B)	What are the applications of PWM? Explain PWM with suitable example	4
	(D)	with necessary diagrams.	
	(C)	What is the difference between Mask PROM and OTP ROM?	2
	(0)		
Que 3	(A)	Given an analog output signal whose voltage should range from 0 to 5 V,	4
		and an 8 bit digital encoding, calculate the correct encoding for 3.5V using	
		successive approximation method.	
	(B)	List the difference between ARM instruction mode and Thumb mode.	4
	(C)	Three processes with process P1, P2, P3 with estimated completion time 4,	-1
		12. 9 milliseconds respectively enters the ready queue together in the order	
		P1 P2, P3, Calculate the waiting time and Turn Around Time (TAT) for	
		each process. Also calculate average waiting time and Average Turn Around	
44		Time in LCFS algorithm.	

Section- II

Que 4	(A) (B)	o "o" "o" pripriotat to motifoly (talistel with 1)(via confronte	5 5
	(C)	Assume that system is using vectored interrupt.	
	(0)	what are the miniations of poining using software?	2
		OR	
Que. – 4	(A)	Compare memory-mapped I/O and standard I/O.	5
	(B)	What is Daisy-chain arbitration? Enlist pros and cons of it.	5 5
	(C)	Draw the diagram to implement port based I/O using bus based system.	
		by the imprement port based in a disting bus based system.	2
Que 5	(A)	With the help of diagram explain how strobe/handshake compromise	6
		protocol is fast as well as secure.	U
	(B)	Explain ARM core data flow model.	5
		OR	3
Que. – 5	(A)	Explain process state transition using diagram.	_
-	(B)	Enlist and explain ARM instruction features which differs from standard	5
	()	RISC instruction set.	5
Que. – 6	(A)	Explain the ARM registers which contains the flag bits as well as various	
	` /	control fields.	4
	(B)	Define and differentiate GPOS and RTOS.	4
	(C)	List the salient features of NSB protocol	4

End of Paper