GANPAT UNIVERSITY

B. Tech. Semester VII Electronics and Communication Engineering Regular Examination November/December-2015

2EC703 VLSI Technology

Max. Time: 3 Hrs.]

[Total. Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Use following data.

$$\begin{split} &\Phi_{F(gate)} = 0.55 \text{V}, \ k\text{T/q} = &0.026 \text{V}, \ q = 1.6 \times 10^{-19} \, \text{C}, \ \ \varepsilon_0 = &8.85 \times 10^{-14} \, \text{F/cm}, \\ &\varepsilon_{Si} = 11.7 \times \varepsilon_0 \, \text{F/cm}, \ \varepsilon_{ox} = &3.7 \times \varepsilon_0 \, \text{F/cm}, \quad n_i = 1.45 \times 10^{10} / \text{cm}^3 \end{split}$$

SECTION-I

(A) Draw schematic and optimize stick diagram layout for following: 6 1. Y = (A(D+E)+BC)'2. 3 input NAND gate 6 Using NORA implement the function AB+(C+D)+(EF+G). Explain the concept of charge sharing and explain the method of how to 6 (A) remove it. Implement (A+B)C using cascade domino CMOS logic. 6 5 What is noise margin? Define V_{IH}, V_{IL}, V_{OH}, V_{OL}, V_{TH} (A) 6 Draw the following digital circuit using transmission gate 1. F=AB+A'C'+AB'C 2. Two input EX-OR gate (A) Explain MOSFET operation in linear and saturation with suitable 6 diagram. Consider a resistive-load inverter circuit with V_{DD}=5V, Kn'=20µA/V², 5 V_{TO} =0.8V, R_L =200K Ω , and W/L=2. Calculate the V_{OL} and V_{IL} on the VTC. What is latch up? Causes of latch up and give the solution for how to 6 (A) 3 remove latch up. Draw voltage transfer characteristics of CMOS inverter, identify critical 6

voltage points and find expression of VIL.

SECTION-II

			6
4	(A)	Write a short note on:	
	()	1. LOCOS	
		2. STI	6
	(B)	Implement AB+(C+D)(E+F)+GH using domino CMOS logic.	
		Complementary Pass transistor	6
4	(A)	Draw the following digital circuit using Complementary Pass transistor	
		logic AND and NAND Gate	
		1. 2 input AND and NAND Gate	
		2. 2 input Ex-OR and Ex-NOR Gate Explain following processes for the MOS system:	6
	(B)	1. Accumulation	
		2. Depletion	
		3. Inversion	
5	(A)	What is lithography? List out the process steps for patterning silicon	Ü
3	(A)	dioxide(SiO2)	5
	(B)	Define following terms:	
	(-)	1 Punch through	
		2. DIBL and Sub threshold condition OR	
			6
5	(A)	Design 4 input NAND Gate using pass transistor. Explain channel length modulation effects in NMOS.	5
	(B)	Explain channel length modulation effects at	6
(5 (A	- 1 C 11 - in a C MAC S hased CITCHII.	6
	(B	Draw the following CMOS based circuit: 1. CMOS SR latch based on NAND2	
		2. CMOS implementation of the D-Latch	
		End of Paper	