Student Exam No.

GANPAT UNIVERSITY

B. Tech. Semester: VII Electronics and Communication Engineering Regular Examination Nov.-Dec. 2016 2EC702: DIGITAL SIGNAL PROCESSING

Time: 3 Hours Instructions:

Total Marks: 70

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

1 (A) Obtain Direct form-I and Direct form-II structures of given system transfer function. 6 $H(Z) = \frac{(1+\frac{1}{2}Z^{-1})(1+\frac{1}{4}Z^{-1})}{(1+\frac{1}{2}Z^{-1})(1+\frac{1}{4}Z^{-1})}$

$$(Z) = \frac{(1+2^{2})(1+4^{2})}{(1-\frac{1}{2}Z^{-1})(1-\frac{1}{4}Z^{-1})(1-\frac{1}{8}Z^{-1})}$$

(B) Obtain Cascade form via the first order sections structure of given system described
6 by difference equation.

$$y(n) = -0.1y(n-1) + 0.72y(n-2) + 0.7x(n) - 0.25x(n-2)$$

OR

 (A) Obtain Signal flow graph of Direct form-I and Direct form-II structures of given 7 system transfer function. Also find number of multipliers, adders and delay elements require in direct form-I and Direct form- II.

$$H(Z) = \frac{1 + 2Z^{-1}}{1 - 1.5Z^{-1} + 0.9Z^{-2}}$$

(B) Obtain Parallel form via the first order sections structures of given system transfer 5 function.

$$H(z) = \frac{1 - Z^{-1}}{1 + 0.2Z^{-1} - 0.15Z^{-2}}$$

- 2 (A) Determine the transfer function and difference equation of 5-tap FIR bandpass filter 6 design using the Fourier transform method with a lower cutoff frequency of 2,000 Hz and an upper cutoff frequency of 2,400 Hz at a sampling rate of 8,000 Hz.
 - (B) The normalized low pass filter with a cut off frequency of 1 rad/sec is given as 5 $H_P(s) = \frac{1}{s+1}$. Use the given $H_P(s)$ and the Bilinear transformation method to design a corresponding digital IIR highpass filter with cutoff frequency of 30 Hz and a sampling rate of 200Hz.

OR

2 (A) A low pass filter is designed with the following desired frequency response 6 specifications

$$H(e^{j\omega}) = \begin{cases} e^{-3j\omega} ; -\frac{\pi}{2} \le \omega \le \frac{\pi}{2} \\ 0 ; otherwise \end{cases}$$

Determine the filter coefficient and transfer function if the window function is defined as $W(n) = \begin{cases} 1 & ; 0 \le n \le 6 \\ 0 & ; otherwise \end{cases}$

(B) Determine the transfer function and difference equation of a first order digital lowpass Butterworth filter with a cutoff frequency of 1500 Hz and a passband ripple of 3dB at a sampling frequency of 8000 Hz.

3	(A)	Draw architectures of TMSC6000 DSP processors and explain functional units and	6
	(B)	its operations. Compare the main lobe width and peak amplitude of side lobe for rectangular,	3
	(C)	Bartlett, hanning, hamming and blackman window function. Explain Impulse Invariant Method to design Digital IIR filter in brief.	3
		SECTION-II	
		and the second second second second and the product of second second second second second second second second	
4	(A)	Obtain the DFT of $x(n)$ if, $x(n) = \begin{cases} 1, 0 \le n \le 3\\ 0, \text{ otherwise} \end{cases}$	4
	(B)	Explain the overlap save method and overlap add method for linear filtering of long	6
		data sequence.	
	(C)	How to obtain same result for linear and circular convolution? OR	2
4	(A)	Explain and prove following property of DFT.	6
		(i) Periodicity	
		(ii) Circular time shift of sequence	4
	(B)	Determine the length-4 sequence from its DFT.	4
		$x(k) = \{4, 1-j, -2, 1+j\}.$	
	(C)	Explain the relation between DTFT and DFT with its equation.	2
P		Find circular convolution of x(n) and h(n) using graphical method.	5
5	(A)	$x(n) = \{1, 2, 3, 4\}$ $h(n) = \{1, 1, 1\}$	
	(B)	Prove following relationship.	6
	. ,	(i) $W_N^K = W_N^{K+N}$	
		$(ii) W_N^2 = W_{N/2}$	
		OR	-
5	(A)	Explain radix-2 decimation in time FFT algorithm.	5
	(B)	Compute the DFT of the following sequence using DIF FFT algorithm.	U

6 (A) Obtain Direct form-I structure of IIR system given by following transfer function. Also find number of multipliers, adders and delay elements require in it.

6

6

$$H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}$$

 $X(n) = \{0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0\}$

(B) Obtain and draw the Lattice structure of FIR filter.

END OF PAPER