Exam No.

GANPAT UNIVERSITY

B. Tech. Semester: VII Electronics & Communication Engineering Regular / Remedial Examination Nov – Dec 2016 2EC704 Elective I (A) Embedded Systems

2EC704 Elective I (A) Embedded Systems

Time: 3 Hours

Total Marks: 70

5

5

2

2

Instructions:

Que.

Que.

Que.

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

- Que. -1 (A) Define the following terms:
 - 1. CPU utilization
 - 2. Response time
 - 3. Turnaround time (TAT)
 - 4. Throughput rate
 - 5. Pre-emption
 - (B) Draw state transition diagram of a Task/Process and explain each state in brief. 4
 - (C) List out and explain various ways to download the Hex file to the Nonvolatile 3 memory.

OR

Que. -1 (A) Define the following terms:

- 1. Completion time
- 2. Deadline
- 3. Run time
- 4. Tardiness
- 5. Laxity

	(B) (C)	Explain sequence of actions in Remote Procedure Call. Write conversion steps from source file to an executable file.	4
-2	(A) (B)	List out features, characteristics and applications of embedded systems. Write short note on Pre-emptive Shortest job next for Preemptive methods of Scheduling with example.	4
	(C)	Write short note on the earliest deadline first algorithm with example.	
		OR	
- 2	(A) (B)	Enlist and explain figures of merit for an embedded system. Write short note on the Priority-based Scheduling for Non-preemptive	4
	(C)	Write short note on the Rate monotonic algorithm with example.	
-3	(A) (B)	Write short note on the LCD and Stepper motor. Which are the steps to be taken into consideration when there is the need to design systems which are power limited?	1

- (C) List out popular IDEs.
- (D) List out qualities of a good RTOS.

Page 1 of 2

Exam No.__

SECTION-II

Que. – 4	(A)	Write the short note on the following External bus: 1. RS 232	6
		2. SPI	4
	(B)	Which are the features of ARIV that make it spectral.	2
	(C)	Explain about Daisy chaining a brackfor boltenet	
		UR	6
Que. – 4	(A)	Write the short note on the following wireless protocols: 1. Wireless LAN (WLAN)	0
		2. USB	4
	(B)	Enlist all advanced features of ARM core and explain any four of them.	2
	(C)	Explain about Distributed arbitration by sen-detection scheme.	
Que. – 5	(A)	For the 32-bit constant generated by each of the following rotations 1 Rotate 0x40, to the right 30 times	4
		2. Rotate 0x56, to the left 12 times	
	(B)	How is the effective memory address calculated in the following load and	4
	(-)	store instructions?	
		1. LDR R4, [R3, R2]	
		2. STR R5, [R4, R3, ASL #4]	3
	(C)	Why does FIQ set another set of registers?	~
		OR	
Que -5	(A)	For the 32-bit constant generated by each of the following rotations	4
Que 5	(11)	1. Rotate 0x05, to the right 6 times	
		2. Rotate 0xFC, to the right 2 times	
	(B)	How is the effective memory address calculated in the following load and	4
		store instructions?	
		1. LDR R3, [R2, LSL #2]	
		2. STR R9, [R1, R2, ROR $\#2$]	3
	(C)	Discuss for three profiles of ARM CORTEX.	
~ ((1)	Circle the differences between Harvard Super Harvard and Von Neumann	3
Que. – 6	(A)	Give the differences between the vara, super the same	
	(D)	Discuss the principle of Watchdog Timer.	3
	(d)	What is the reason for the shift from parallel to serial buses in embedded	3
	(C)	systems?	
	(D)	How the ARM becomes a microcontroller unit?	3
	()		

END OF PAPER

1. 17