Seat No.

Total Marks: 70

GANPAT UNIVERSITY B. TECH. SEMESTER VII (EC) ELECTRONICS & COMMUNICATION ENGINEERING REGULAR EXAMINATION, NOV / DEC-2016 2EC 701: - INFORMATION THEORY AND CODING

Time: 3 Hours

Instruction:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Assume suitable data, if necessary.

SECTION-I

(A) Define the Hamming Distance and Hamming Weight of a code-word with example.
(B) Consider a (7,4) code whose generator matrix is

$$G = \begin{vmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{vmatrix}$$

- a) Find all the code vectors of the code.
- b) Find H, the parity check matrix of the code.
- c) Detect valid codeword by syndrome decoding method for r(x) = 1101101
- d) Find d_{min} , t_d and t_c .

OR

- 1 (A) Prove that a linear code the minimum distance is equal to the minimum weight of the code, 3 i.e., $d^* = w^*$.
 - (B) Consider a simple (5,2) code with the generator matrix
 - $\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$
 - a) find the parity check matrix H.
 - b) Construct the standard array for this code.
 - c) The decoder receives $\mathbf{r} = (01010,)$ is valid code-word?
 - (C) Discuss the decoding of a linear block code.
- 2 (A) Write a short note on Hamming codes-perfect codes for single errors.

(B) Consider a systematic block code whose parity check equations are

- $p_1 = m_1 + m_2 + m_4; p_2 = m_1 + m_3 + m_4; p_3 = m_1 + m_2 + m_3; p_4 = m_2 + m_3 + m_4$ Where, m_i are message digits and p_i are check digits.
- a) Find the generator matrix and the parity- check matrix for this code.
- b) How many errors can the code correct?
- c) Is the vector 10101010 a valid codeword?
- d) Is the vector 11000101 a valid codeword?

OR

2 (A) Design a feedback shift register encoder for an (8,5) cyclic code with a generator $g(x) = 1 + x + x^2 + x^4$. Use encoder to find the codeword for the message 10101 in a systematic form.

4 8

5

4

5

6

8

(B) Prove that the A sphere of radius $r (0 \le r \le n)$ contains exactly $\binom{n}{0} + \binom{n}{1}(q-1) + \binom{n}{2}(q-1)^2 + \dots + \binom{n}{r}(q-1)^r$ Vectors.

3	(A)	Find a generator polynomial $g(x)$ for a (7,4) cyclic code and find code	8
	<u><u>v</u> /</u>	vectors for the following data vectors: 0010,1110,1001,1011.	
	(B)	Write notes on standard array and error detection and correction of the linear block codes.	4

SECTION-II

3

ない

1	(A)	State and explain various properties of information.	4
	(R)	State various types of sources and explain any one of them.	4
	(C)	State and explain source coding theorem.	4
	(0)	OR	
1	(A)	Prove that maximum channel capacity $C_{\infty}=1.44$ S/N ₀ .	6
•	(R)	Design binary Huffman code for a discrete source of five independent symbols A, B, C,	6
	(1)	D, E with probabilities 0.4, 0.2, 0.8, 0.08 and 0.02 respectively. Find average code word length.	
5	(A)	What is entropy? Derive the expression for entropy?	6
	(B)	Develop Shannon – Fano code for five messages given by probabilities 1/2, 1/4, 1/8,	5
	(-)	1/16. 1/16. Calculate the average number of bits/message.	
		OR	
5	(A)	Prove (i) Entropy of extremely likely and extremely unlikely message is zero. (ii) Entropy is maximum when the messages are equally likely.	6
	(B)	Define: (1) BSC (2) Prefix code (3) Information rate.	3
	(C)	Calculate the amount of information in terms of bits, nats and decit if probability of occurrence $P_k=1/4$.	2
6	(A)	A rate $\frac{1}{2}$ convolution encoder with constraint length 3 is described by $g_1(x) = 1 + x + x^2$ and $g_2(x) = 1 + x^2$.	6
		Draw the trellis diagram for this encoder and encode the message 10111.	
	(B)	Write short note on Trellis coded modulation.	4
	(C)	Develop the primitive element for GF(5).	2

END OF PAPER