GANPAT UNIVERSITY

B. Tech. Semester VII Electronics and Communication Engineering **CBCS Regular Examination November/December-2016** 2EC703 VLSI Technology

Max. Time: 3 Hrs.]

[Total. Marks: 70

5

6

6

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the right indicate full marks.
- 4. Use following data.

 $\Phi_{F(gate)} = 0.55V, kT/q = 0.026V, q = 1.6 \times 10^{-19} C, \epsilon_0 = 8.85 \times 10^{-14} F/cm,$ $\epsilon_{si} = 11.7 \times \epsilon_0 \text{ F/cm}, \ \epsilon_{ox} = 3.7 \times \epsilon_0 \text{ F/cm}, \ n_i = 1.45 \times 10^{10} \text{/cm}^3$

SECTION-I

1	(A)	Draw and explain the steps in LOCOS process.	U
*	(B)	Give the difference between CPLD and FPGA.	6
1	(A) (B)	OR Explain constant voltage scaling and its effects on different parameters.	6
		Explain constant voltage scaling and the Explain the types of MOSFET Capacitances.	6

- Explain Gradual Channel Approximation (GCA) and derive equation for drain current 5 2 (A) I_D (lin) and I_D (sat).
 - Draw voltage transfer characteristics(VTC) of resistive load inverter, identify critical 6 **(B)** voltage points and find expressions of Vol.

OR

- Calculate the threshold voltage V_{TO} at $V_{SB}=0$, for a polysilicon gate n-channel MOS 6 2 (A) transistor, with the following parameter: Substrate doping density $N_A = 10^{16}$ cm⁻³ polysilicon gate doping density $N_D = 2 \times 10^{20} \text{ cm}^{-3}$, gate oxide thickness $t_{ox}=500\text{\AA}$, and oxide-interface fixed charge density $N_{OX} = 4 \times 10^{10} \text{ cm}^{-2}$
 - Draw and explain CMOS fabrication steps in brief. **(B)**
- What is latch up? Causes of latch up and how to avoid it. (A) 3
 - Explain following processes for the MOS system: **(B)**
 - 1. Accumulation
 - 2. Depletion
 - 3. Inversion

SECTION-II

4	(A)	Optimize stick diagram layout of a complex CMOS logic gate $Y = (A (D+E) +BC)'$	6
	(B)	Draw the following digital circuit using transmission gate	6
		1. 4:1 MUX	
		2. $F=AB+A'C'+AB'C$	
		OR	,
4	(A)	Implement (A+B) · C using cascade domino CMOS logic.	0
	(B)	Explain working principle of CMOS SRAM cell with necessary circuit diagram and	6
		waveforms for read and write operation.	
E	(4)	Design 4 input NAND Gate using pass transistor	6
3	(A)	Design 4 input IVAIVD Gate using pass transistor.	0
	(B)	Explain channel length modulation effects in NMOS.	5
		OR	
5	(A)	Draw the following CMOS based circuit:	6
		1. CMOS SR latch based on NAND2	
		2. CMOS implementation of the D-Latch	
	(B)	Using NORA implement the function $AB+(C+D) + (EF+G)$.	5
6	(A)	Draw the circuit diagram of a TSPC based rising edge-triggered DFF.	6
	(B)	Explain CMOS Ring oscillator.	6

End of Paper