Student	Exam	No:	

GANPAT UNIVERSITY B. TECH SEM-VIII (ELECTRICAL ENGINEERING) REGULAR EXAMINATION APRIL-JUNE 2017 2EE833 EHVAC & HVDC TRANSMISSION

		3 Hours Total Marks: -70	
	Instru	ctions: - 1. Attempt all questions.	
		2. Make suitable assumptions wherever necessary.	
		3. Figures to the right indicate full marks. SECTION-I	
0.1	(4)		10.0
Q:1	(A)	Enlist main type of insulators and give brief description on insulator requirement in EHVAC transmission line.	(06
	(B)	The spacing between two circuits of a 3-phase, vertically configured double circuit overhead line is 8 m and distance between adjacent phase conductors in individual circuit	(06)
		is 4 m. The phase sequence is ABC and the line is completely transposed. The conductor radius in 1.6 cm. Find the inductance per phase per kilometer.	
		OR	
Q:1	(A)	Analyze 12 pulse converter also discuss its application?	(06)
	(B)	What do you mean by phase control? Explain individual phase control & Equidistant phase control.	(06)
Q:2	(A)	What are the modern trends in HVDC transmission technology? Explain in detail.	(05)
	(B)	Discuss advantages of EHVAC Transmission line over HVDC system of transmitting power.	(06)
		OR OR	
0.2	(4)		/A=\
Q:2	(A)	Draw block diagram of HVDC-VSC system and discuss about the function of each component?	(07)
	(B)	High voltage rectifier has no load ideal DC voltage of 375 kV. The DC current is 1.9 A & actual DC voltage is 260 V. Find reactive power consumed by rectifier?	(04)
Q:3	(A)	Why transmission of electrical power at extra-high voltage is preferred? Explain in detail with equations.	(05)
	(B)	A Single phase overhead AC line has inductance/km as 2mH and a capacitance of 0.125x10-7 F/km. Estimate the surge impedance loading of the line when the system voltage is 400KV.	(03)
	(C)	Explain in brief. A. Aeolian Vibration B. Galloping	(04)

SECTION-II

- Q:4 (A) A power of 12*10³ MW is required to be transmitted over a distance of 1000 km. The values of r=0.003 & x=0.25 At different voltage levels of 800KV,1000KV & 1200 kV. Determine:(i) Possible number of circuits required with equal magnitudes for sending and receiving end voltages with 30° phase difference. (ii) The value of transmission currents. (iii) The total system line losses.
 - (B) What do you mean by critical disruptive voltage? How does it differ from visual critical (0 voltage?

OR

- Q:4 (A) A power of 2000 MW is to be transmitted from a super thermal power station in Central India over 800 km to Delhi. Use 750 kV transmission line. Suggest the number of circuits required with 50% series capacitor compensation, and calculate the total power loss and loss per km. (Consider values of r=0.0136, x=0.272 and take δ=30°)
 - (B) Deduce the relationship of % $P=100(\sin \delta)(r/x)$.

(04

(05

- Q:5 (A) Elaborate basic operational issues involved with High Voltage DC transmission system?
 - (B) The configuration of some EHV lines for 400 kV to 1200 kV are given. Calculate GMR (06 for each bundle conductor.

(a)	400 kV:	N=2	d=3.18 cm	B=45 cm
(b)	750 kV:	N=4	d=3.46 cm	B=45 cm
(c)	1000 kV:	N= 6	d=4.6 cm	B=12 d
(d)	1200 kV:	N=8	d=4.6 cm	R=0.6 m

OR

- Q:5 (A) What do you mean by conductor bundling? Discuss about advantages of bundle (05) conductors?
 - (B) A 400-kV Indian transmission line uses a 2-conductor bundle with $d_m = 0.0318$ m for each conductor. The phase current is 500 Amps per conductor. The area of each conductor is 515.7 mm², $Qa = 2.7 \times 10^{-8}$ ohm-m at 20°c, $\alpha = 0.0045$ ohm/°C at 20° c. Take the ambient temperature $t_a = 40$ °C, atmospheric pressure p = 1, wind velocity $v_m = 1$ m/s, e = 0.5 and neglect solar irradiation. Calculate the final temperature of conductor due to only to I^2R loss heating. (Take L=1.05m).

Q:6 Attempt any two.

(12)

- (A) Discuss the following types of bundle conductors:(A)AAC (B)AAAC (C)ACSR
- (B) A 3-phase line has conductors 2 cm in diameter spaced equilaterally 1 m apart. If the dielectric strength of air is 30 kV (max) per cm, find the disruptive critical voltage for the line. Take air density factor δ =0.952 and irregularity factor m0 = 0.9.
- (C) Explain factor affecting corona effect?

END OF PAPER
Best of Luck