GANPAT UNIVERSITY

B. Tech. Semester: III Electrical Engineering

Regular Examination November - December 2013

	2HS301 - ENGINEERING MATHEMATICS - III - Theory	
Time: 3	Hours Total Marks	: 70
nstruct	 ion: 1. All questions are compulsory. 2. Write answer of each section in separate answer books. 3. Figures to the right indicate marks of questions. 	. 70
Que-1	(a) Derive $L\{e^{at}\}$ and Evaluate: $L\{\frac{1-e^t}{t}\}$	12
	(b) Evaluate: (1) $L\{(t+2)^2 e^t\}$ (2) $L^{-1}\{\frac{1}{S^2 - S - 2}\}$ (c) Solve differential equation $y''' + 2y'' - y' - 2y = 0$, $y(0) = 1$, $y'(0) = 2$, $y'(0) = 2$	
Que-1	Answer the following. (a) Derive $L\{Sin\ at\}$ and Evaluate: $L\{Sin\ at\}$	12
Ad-	(b) Evaluate: (1) $L\left\{e^{-3t}u(t-2)\right\}$ (2) $L^{-1}\left\{\log\left(\frac{S^2+1}{S^2}\right)\right\}$ (c) Solve differential equation $y'' + 4y = Sint$, $y(0) = 1$, $y'(0) = 0$	
Que-2	Answer the following. (a) Find a Fourier series to represent: $f(x) = \pi^2 - x^2$, $-\pi \le x \le \pi$	11 3
	(b) Find a Fourier series for the function define as $f(x) = \begin{cases} -x - \pi & ; & -\pi \le x \le 0 \\ x + \pi & ; & 0 \le x \le \pi \end{cases}$	4
	Find a series of sine multiples of x which present $f(x)$ in the interval $(0, \pi)$ where $f(x) = \begin{cases} \pi x & \text{if } 0 \le x \le \frac{\pi}{2} \\ \frac{\pi x}{4} (\pi - x) & \text{if } \frac{\pi}{2} \le x \le \pi \end{cases}$	4
Que-2	Answer the following.	11
	(a) Obtain the Fourier series to represent the function $f(x) = x^2$, $-\pi \le x \le \pi$	3
	(b) Expand $f(x) = x \cdot \sin x$ as a Fourier series in the interval $[-\pi, \pi]$	4
	(c) Find a series of cosine multiples of x which present $f(x)$ in the interval	4
	$[0, \pi] \text{ where } f(x) = \begin{cases} x & ; 0 \le x \le \frac{\pi}{2} \end{cases}$	

 $\pi - x$; $\frac{\pi}{2} \le x \le \pi$

12

12

11

3

11

3

12

Que-3 Attempt any three.

- (a) Find a Fourier transform of $f(x) = \begin{cases} 1 x^2 & ; & |x| \le 1 \\ 0 & ; & |x| > 1 \end{cases}$
- (b) Find a Fourier sine transform of $\frac{e^{-ax}}{x}$
- (c) In a group of 200 students 40 are taking English, 50 are taking Mathematics, and 12 are taking both. A student is selected at random, those taking Mathematics. What is the probability that the student is taking English?
- (d) For two independent event A and B if P(A) = 0.3 and $P(A \cup B)$ then find P(B)

Section-II

Que-4 Answer the following.

- (a) Define Analytic function. Discuss the analyticity of $f(z) = z^2$ and find f'(z) if it exists.
- (b) Show that the function $u = \sin x \cosh y$ is harmonic function and determine its conjugates.
- (c) Find the image of infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$. Also show the region graphically.

Que-4 Answer the following.

- (a) Verify that the function $(x^2 y^2 + 2xy) + i(y^2 x^2 + 2xy)$ is an analytic.
- (b) Find an analytic function f(z)=u+iv, if $u-v=e^{x}(\cos y-\sin y)$
- (c) Find the Bilinear transformation which maps the points $z = -1, 1, \infty$ in to w = -i, -1, i.

Que-5 Answer the following.

- (a) Solve: $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^{4x}$
- (b) Solve: $(D^2 + D)y = x^2 + 2x + 4$
- (c) Use the method of variation of parameters to solve $y'' + y = \sec x$

OR

Que-5 Answer the following.

- (a) Solve: $(D^3 + D^2 D 1)y = \cos 2x$.
- (b) Solve: $(D-2)^3 y = x^2 e^x$
- (c) Solve: $x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = \log x$

Que-6 Attempt any three.

- (a) Evaluate $\oint \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle |z| = 4
- (b) State the Cayley-Hamilton theorem and find A^{-1} for $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$
- (c) If $A = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix}$, show that A*A is a Harmitian matrix.
- (d) Define: (1) Hermitian matrix (2) Skew-Hermitian matrix (3) Unitary Matrix End of Paper