Date: 21/11/2016.

Exam No:

TOTAL MARKS: 60

GANPAT UNIVERSITY B.TECH SEM III (ELECTRICAL) REGULAR EXAMINATION NOV-DEC 2016 2EE303: ANALOG ELECTRONICS

TIME: 3 HRS

Instruction:

- (1) This Question paper has two sections. Attempt each section in separate answer book.
 - (2) Figures on right indicate marks.
 - (3) Be precise and to the point in answering the descriptive questions.

SECTION-I

Q.1

- (A) Explain 1-phase half wave rectifier with R-L load.
- In the Centre-tap circuit shown in below figure, the diodes are assumed to **(B)** be ideal i.e. having zero internal resistance. Find: (I) D.C. output voltage (II) peak inverse voltage.

05	>

[05]

Q.1

Q. 2

Q. 2

Q. 3

2	(A) (B) (C)	Define $\alpha \& \beta$ and also derive relation between $\alpha \& \beta$ in BJT. Discuss on output characteristic of N channel JFET. Explain - Zener Diode.	[04] [04] [02]
	(A) (B)	Describe the working and construction of NPN transistor. Explain input and output characteristic of CB configuration of BJT. OR	[05] [05]
	(A) (B)	Explain the Working of IC – LM-340 with circuit diagram. Discuss the application of IC -555 as a monostable multivibrator.	[05] [05]
		Attempt any two	[10]
	(A)	Give classification of different types of clamper circuit and explain any one.	

- Explain the construction and working of N channel depletion MOSFET. **(B)**
- State difference between MOSFET and BJT. **(C)**

SECTION-II Q.4 Derive the equation of voltage gain (A_f), input resistance (R_{if}) and output [05] (A) resistance (Rof) for inverting amplifier with feedback configuration. Discuss the operation of integrator with necessary diagrams. Also derive [05] **(B)** the equation of output voltage. OR Q.4 With help of neat sketch, illustrate a low pass active filter using op-amp. [05] (A) Design a Wien bridge oscillator that will oscillate at 2 KHZ. [05] (B) Q.5 Draw and explain a neat circuit diagram of op-amp as a unity gain [05] (A) amplifier. Discuss the principles of negative current feedback in transistor amplifier [05] **(B)** with a neat diagram. OR Q.5 Derive an expression for the gain of negative voltage feedback transistor [05] (A) amplifier. Explain summing, scaling and averaging amplifier using inverting [05] **(B)** configuration of op-amp. [10] Attempt any two Q.6 Write short notes on classification of transistor amplifiers. (A) Draw the block diagram of an op-amp and explain the purpose of using **(B)** each block. Derive an expression for the voltage gain of a transistor amplifier from its (\mathbf{C}) AC equivalent circuit. Give the definitions of following. **(D)** SVRR (i) (ii) CMRR Slew rate (iiii) Input Bias Current (iv) Input Offset Voltage (\mathbf{v}) -----END OF PAPER-----

Page 2 of 2