Student Exam No:

GANPAT UNIVERSITY B.TECH SEM-IV ELECTRICAL ENGINEERING REGULAR EXAMINATION MAY / JUNE - 2013 2EE 401:- ANALOG AND DIGITAL ELECTRONICS

Time: 3 Hours

Totalmarks: 70

[12]

Instruction: - 1 Attempt all questions.

2 Make suitable assumptions wherever necessary.

3 Figures to the right indicate full marks.

SECTION - I

- Q-1 (A) List and Discuss all ideal characteristics of an Op Amp
 - [3] (B) Define OP-AMP. Briefly explain (1) SVRR (2) Output voltage swing [4] (3) Slew Rate
 - (C) The 741 op amp is configured as a non inverting amplifier with [5] feedback. The following data are given for the circuit. A = 400000, Ri =33 MΩ, R1 = 470Ω, RF= 4.7KΩ, R₀ = 60Ω, Supply voltage = ± 15 V, Maximum output voltage swing = ± 13 V, UGB = 0.6 MHz. Compute the closed loop parameter AF, RiF, RoF, Ff, and VooT.

Q - 1

- (A) What are the feedback configurations? Draw an Op-amp circuit with voltage [6] series feedback amplifier and Derive an expression of closed loop voltage gain for it.
- (B) Explain summing, scaling and averaging amplifier using inverting [6] configuration.

(A) Draw the input and output characteristics of common emitter connection. Q-2[4] (B) Give the relation between β and α . [3]

(C) A transistor is connected in common emitter configuration in which [4] collector supply is 8V and the voltage drop across resistance R_C connected in the collector circuit is 0.5 V. The value of $R_c = 800 \Omega$. If α =0.96, determine: (I) collector emitter voltage, (II) base current.

OR

- Q-2 (A) List out the various methods used for transistor biasing. Explain any one [4] in details.
 - Explain the construction and working of a JFET. **(B)**
 - [4] (C) Find the value of I_c for potential divider method of biasing if $V_{cc} = 9V$, [3] $R_E = 1K\Omega$, $R_1 = 39 K\Omega$, $R_2 = 10K\Omega$, $R_C = 2.7 K\Omega$, $V_{BE} = 0.15V$ and $\beta = 90$.

Q-3

- Answer the following question. (Any Three)
- (A) Sketch the circuit of Op-amp as Differentiator and explain with necessary waveforms.
- Explain principle of Basic Comparator. Describe operation of Schmitt **(B)** Trigger with necessary diagram.
- Draw & Discuss IC 555 as astable multivibrator. (\mathbf{C})

(D) Draw typical connection diagram of LM317 voltage regulator. Find its output voltage

		SECTION - II	
Q - 4	(A)	Convert following.	[6
		(1) $(1101)_{10} = (?)_2$ (1) $(F52C0) = (?)$	
		$(II) (E52C9)_{16} - (7)_2$ (III) (25C E) ₁₆ = (2) ₆	
	(B)	(I) Convert following by using stream line method	
		$(111001.101)_2 = (?)_{10}$	16
		(II) What is parity? Types of Parity? Explain even parity	
		(III) Convert following in Excess-3 code.	
		$(8/94)_{10} = (?)_{EX-3}$	
0-4	(A)	(I) Using 1's complement method newform following 1'	
-	()	(0101) ₂ -(1010) ₂	[6]
		(II) Convert following in Excess-3 code.	
		$(3512)_{10} = (?)_{EX-3}$	
	(B)	Convert following.	[6]
		(1) $(25.FA)_{16} = (?)_8$ (11) $(8125)_{16} = (0)_8$	
		$(II) (8133)_{10} = (2)_2$ $(III) (110011)_2 = (2)_2$	
		(III) (III00II)2 (:)Gray	
Q-5	(A)	Explain rules for simplification of k-map.	161
	(B)	Simplify following function using k-map.	[5]
		$f(A,B,C,D) = \sum m(1,2,9,10,12,13,14)$	[0]
0-5	(4)	Evolain NAND EV OD 1 EV NOD	
* *	(11)	truth tables	[6]
	(B)	Using De Morgan's theorem prove that following	1.51
		$\overline{ABC} + B + \overline{BD} + \overline{ABD} + \overline{AC} = B + C$	[2]
0 (4		
Q-0	Answer the following question. (Any Three)		[12]
	(11)	with their truth table	
	(B)	Explain BCD to 7 segment decoder? Draw the Truth table for assure	
	ed.	cathode display.	
	(C)	Explain R-S flip flop.	
	(D)	Explain T flip flop.	
	VILLE	(A) Stetch the circuit of Op-amp ² Differentiatin and out with acce	
		ben of their	

END OF PAPER