GANPAT UNIVERSITY

B. Tech. Semester: IV Electrical Engineering

Regular Examination April - June 2015

2EE404: Computer Oriented Numerical Methods

Time: 3 Hours

Total Marks: 70

1061

Instruction:

- 1. Figures to right indicate full marks.
- 2. Use section-wise separate answer-book
- 3. Figures to right indicates full marks.
- 4. Assume suitable data wherever needed.

SECTION - I

- Q-1 (A) Solve following equations by Gauss-Seidal method. 3x 0.1y 0.2z = 7.8; 0.1x + 7y 0.3z = -19.3; 0.3x 0.2y + 10z = 71.4.
 - (B) Find a root of $x \cos x$, correct to three decimal places using the secant method [06]

OF

Q-1 (A) In a given electrical network, derive the equations for the current i_1 , i_2 and i_3 and [07] find the value of said current using Gauss Elimination Method.

- (B) Using Bisection method find the solution of $xe^x 3 = 0$. Consider the accuracy three decimal places. [05]
- Q-2 (A) Apply Runge-Kutta Method of order 4 to find the approximate value of y for x = 0.2, [06] in steps of 0.1, if $\frac{dy}{dx} = x + y^2$, given that y = I when x = 0.
 - (B) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y = 1 at x = 0. Find y for x = 0.1 using Euler's [05] Method.

OR

- Q-2 (A) Obtain y at x = 0.1 and 0.2, using modified Euler's method Given y' = 1 y and [06] y(0) = 0.
 - (B) Using Milne's method find y(4.4) given $5xy' + y^2 2 = 0$ given that y(4) = 1; [05] y(4.1) = 1.0049; y(4.2) = 1.0097; y(4.3) = 1.0143; y(4.4) = 1.0187.

- (A) Using Newton-Raphson method, find a root of equation $2x = 7 + log_{10} x$ correct up to 3 decimal places.
- (B) Compute the value of $\int_0^1 \frac{x^2}{1+x^3} dx$ using Trapezoidal rule.
- (C) Find the y'(0) and y''(0) from the table given below:

x :	0	1	2	3	4	5
<i>y</i> :	4	8	15	7	6	2

(D) Calculate the value of $\int_0^{\pi} \sin x \ dx$ using Simpson's $\frac{1}{3}$ rd rule.

SECTION - II

Q-4 (A) Find f(22) from the following data using Newton's Backward Interpolation formulae.

[06]

x:	20	25	30	34	40	45
f(x):	354	332	291	260	231	204

(B) Solve the equation $u_{xx} + u_{yy} = 0$ for the square mesh with the boundary values as [06] shown in figure. Calculate upto 4^{th} iteration.

OR

Q-4 (A) Using Lagrange's interpolation, calculate the profit in the year 2000 from the [06] following data:

Year	1997	1999	2001	2002
Profit in Lakhs of Rs.	43	65	159	248

(B) Using shooting method, solve the boundary value problem

[06]

$$\frac{d^2y}{dx^2} = 6y^2, y(0) = 1, y(0.5) = 0.44$$

Q-5 (A) Form a table of differences for the function $f(x) = x^3 + 5x - 7$ for x = -1, 0, 1, 2, 3, [06] 4, 5. Continue to table to obtain f(6).

(B) The resistance R of a carbon filament lamp was measured at various values of the [05] voltage V and the following observations were made:

V: 12				
62	70	78	84	92
R: 73	70.7	697	67.8	66.3

Assuming a law of the form $R = \frac{a}{v} + b$, find by graphical method the best values of a and b.

OR

- (A) Solve the Poisson equation $u_{xx} + u_{yy} = -81xy$, 0 < x < 1, 0 < y < 1, given that [06] u(0,y) = 0, u(x,0) = 0, u(1,y) = 100, u(x,1) = 100 and h = 1/3.
 - (B) What are the basic sources of errors in numerical computation? Explain with suitable [05] block diagram.
- Attempt any two. [12]
 - (A) Explain the finite difference method to solve the boundary value problems.
 - (B) Construct the table of differences for the data:

W. 1 0				
X. 0	1 3 3 4 4	2	3	4
f(x): 1.0	1.5	1 22 1	3.1	4.6

- Develop the normal equations for the following types of curves:
 - (a) $y = ax + bx^2$ (b) $xy^a = b$

 - (c) $y = ax^2 + b/x$

END OF PAPER