GANPAT UNIVERSITY

B. Tech. Semester: VI (Electrical) Engineering

Regular / Remedial Examination April - June 2016

2EE613: Digital Signal Processing

Time: 3 Hours

Total Marks: 70

- Instruction: 1. Assume suitable data if necessary.
 - 2. Figures to right indicate full marks.
 - 3. This Question paper has two sections. Attempt each section in separate answer book.
 - 4. Be precise and to the point in answering the descriptive questions.

SECTION: I

Que.1

(A) Investigate whether systems shown below are linear/ nonlinear, time [06] dependent/independent, and causal/non causal. 1) u(m).

$$y(n) = n x(n)$$

- 2) $y(n) = \cos[x(n)]$
- Perform linear convolution of following sequences by mathematical equation [06] (B) method. x

$$h(n) = \{1, 2, 1, 2\}, h(n) = \{1, 1, 1\}$$

OR

Que.1

- Explain the given systems with respect to (i) time invariance (ii) linearity (A) 1061 properties.
 - 1) $y(n) = \sum_{k=-\infty}^{n} X(k)$
 - 2) y(n) = sgn[x(n)]
 - 3) y(n) = Trunc[x(n)]
- Find the linear convolution of sequences shown below by tabular method. **(B)** [04] $x(n) = \{1, 1, 1\}, h(n) = \{1, 1, 1\}$
- What is ROC? Define the ROC for finite length right sided signal. (C)[02]

Que.2

(A)	Derive the magnitude and phase spectrum of frequency response for first order	[06]
	discrete time system $y(n) = x(n) + a y(n-1)$ using DTFT.	Tool

Find the z - transform: $x(n) = n^2 + 4n + 3$ for $n \ge 0$ **(B)** [05]

OR

Que.2

Que.3

(A) Obtain the impulse response $h(n)$ of the system using z-transform. y(n) - 3y(n-1) + 2y(n-2) = 3y(n) + 2y(n-1) + y(n-2)	[06]
(B) Compute the DTFT of the following sequence. $x(n) = a^{ n } ; -1 \le n \le 1$	[05]
Attempt following questions.	

- (A) Compare: IIR filter with FIR filter
- [03] Draw direct form I & direct form II structure realization of the IIR systems. **(B)** [07] $y(n) + \frac{3}{8}\dot{y}(n-1) - \frac{1}{64}y(n-3) = x(n) + 3x(n-1) + 2x(n-2)$
- What do you mean by twiddle factor? Explain. (C)

[02]

		SECTION : II	
Que.4			•
	(A)	Explain the various methods of representing discrete time signals with examples.	[05
	(B)	State & Explain sampling theorem in details.	[05
	(C)	What is Nyquist rate of sampling? Explain its significance.	[02]
Que.4		OR	
4 (A)	(A)	Draw the examples of (i) Continuous & Discrete time signals (ii) periodic & aperiodic signal and (iii) Even and odd signals.	[05]
	(B)	Discrete time signal is given by $x(n) = \{1, 2, 3, -2, -1, 0, 1, 4\}$ Find;	[05]
		(i) $x(n+3)$ (ii) $x(-n)$ (iii) $x(-n+2)$ (iv) $x(2n+3)$ (v) $x(\frac{n}{2})$	
	(C)	Draw the characteristic of low pass Butterworth filter.	[02]
Que.5			
	(A)	Write down the steps and expressions for designing IIR lowpass digital Butterworth filter.	[06]
5 (1)	(B)	Compute the 4 – point IDFT of the sequence $X(K) = \{2, 1-j, 0, 1+j\}$	[05]
~ ~		OR	
Que.5	(1)		
	(A)	For Hanning window & Hamming window give function representation, time domain & Magnitude response of it	[06]
	(B)	In detail explain gibbs phenomenon.	[05]
Que.6	Atter	npt following questions	
	(A)	Evaluate the convolution of the following sequences using 4-point DFT & IDFT.	[06]
		$x(n) = \{1, 2, 3, 1\}, h(n) = \{4, 3, 2, 2\}$	
	(B)	Explain the application of DSP in speech recognition.	[06]

END OF PAPER