GANPAT UNIVERSITY

B. Tech. Semester: III -Marine Engineering

Regular Examination November – December 2014

2MR307- Strength of Material

Time: 3 Hours

	1. A 4.	111			1.1.	111				Contraction of the second				and the		and a second	the second		A STATE	T	7	ta	1	T	M	12	1	r	R	5 .	7
-	1 - 1 - N			*		(the second	A STATE	and the second s			the search		CT RANKING	the second	1.	14				1 Ste	*		111	1.1.1	0				1	1000	· de
	U'S D					in the second			1			ちちちち		and a second	and and a	101-102	The Party					Z LA	1		••••			1.1	and the second	·	 11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1

- Instructions: (1) Attempt all Questions.
 - (2) Assume suitable data if necessary.
 - (3) Figure to the right indicates full Marks.
 - (4) Start new Question on New Page.

Section - I

Que. – 1	(a) List the different types of Stresses and explain any one in detail.	6										
	(b) Explain design procedure of thin cylinder with neat sketch.	6										
	OR											
Que. – 1	A solid round bar 3 m long and 50 mm in Diameter is used as a strut with both ends hinged. Determine the crippling load. Take $E=200000 \text{ N/mm}^2$.	12										
Que. – 2	(a) List assumptions made in the Euler's column theory.	6										
	(b) Explain stress-strain diagram with neat sketch.	5										
	OR											
Que. – 2	The tensile stresses at a point across two mutually perpendicular planes are 120 N/mm ² and 60 N/mm ² Determine the normal, tangential and resultant stresses on a plane inclined at 30° to the axis of minor stresses.	11										
Que. – 3	Explain theory of simple bending stress.	12										
	Section - II											
Que. – 4	A solid circular shaft transmits 50 kW power at 100 r.p.m. Calculate the shaft diameter, if the twist in the shaft is not to exceed 1° in 1 meters length of shaft, and shear stress is limited to 50 N/mm ² . Take C=1 * 10^5 N/mm ² .	12										
	OR											
Que. – 4	(a) A solid circular shaft transmits 50 kW power at 100 r.p.m. Calculate the	6										
	(b) Define neutral axis and neutral layer.	6										
Que. – 5	A rolled steel joints of I section has the dimensions 100*100*20. This beam of I section carried a u.d.l. of 40 kN/m run on a span of 10 m, calculate the maximum stress produced due to bending.	11										
	OR											
Que. – 5	(a) Find the moment of inertia of T section having 120*120*20 mm.	6										
	(b) Differentiate tensile and shear stress with neat sketch.											
Que. – 6	A rectangular beam 200 mm deep and 300 mm wide is simply supported over a span of 8 m. What uniformly distributed load per meter the beam may carry, if the bending stress is not to exceed 120 N/mm ² .	12										
	END OF PAPER											

Page 1 of 1