Student Exam No.

Total Marks: 70

6

GANPAT UNIVERSITY

B. Tech. Sem-IV (Marine Engineering)

Regular Examination/ May - June 2014

Applied Thermodynamics - II (2MR406)

Time: 3 Hours

Instruction: 1. Attempt All The Questions.

2. Assume Suitable Data if not giving.

3. Be Precise with your Answer.

4. Don't write anything on question paper.

SECTION - I

Quest.1	(A)	What is fuel give its classifications and also write the advantages of liquid fuel over	6
	(B)	solid fuels.	6
	(D)	OR	
Quest 1	· (A)	Define Following terms	6
Questi	()	(i) Reynolds Number (ii) Prandtle Number (iii) Nusselt Number	
		(iv) Stanton Number (v) Grashoff number (vi) Graetz Number	,
	(B)	Derive the relation for variation of fluid velocity with flow area.	0
Quest.2	(A)	Derive an expression for Fluid pressure with Flow area.	3
	(B)	A Reactor's wall, 320 mm thick, is made up of an inner layer of fire brick ($k=0.84$ W/m ⁰ C) covered with a layer of insulation ($k=0.16$ W/m ⁰ C). The reactor operates at a temperature of 1325 ^o C and the ambient temperature is 25 ^o C.	• 6
	le plat	 (i) Determine the thickness of fire brick and insulation which gives minimum heat loss. 	
		(ii) Calculate the heat loss presuming that insulation material has a maximum temperature of 1200°C	
		OR	-
Quest.2	(A)	A steel pipe with 50 mm OD is covered with a 6.4 mm asbestos insulation (k=0.166 W/m-K) followed by a 25 mm layer of fiber glass insulation (k=0.0485 W/m-K). The pipe wall temperature is 393K and outside insulation temperature is 311K. Calculate interface temperature between asbestos and fiber glass.	5
	(B)	A furnace wall consists of 200 mm layer of refractories bricks, 6 mm layer of steel plate and a 100 mm layer of insulation bricks. The maximum temperature of the wall is 1150° C on the furnace side and the minimum temperature is 40° C outermost side	6
ale c citia n		of the wall. An accurate energy balance over the furnace shows that the heat loss from the wall is 400 W/m ² . It is known that there is a thin layer of air between the layer of refractories brick and steel plate. Thermal conductivities for the three layers are $1.52,45$ and 0.138 W/m ⁰ C respectively. Find	
		 (i) To how many mm of insulation brick is the air layer equivalent (ii) What is temperature of the outer surface of steel plate 	
Quest.3	(À)	Determine rate of heat flow through a spherical boiler wall which is 2 m in diameter and 2 cm thick steel (k=58 W/m-K). The outside surface of boiler wall is covered with asbestos (k=0.116 W/m-K) 5 mm thick. The temperature of outer surface and that of fluid inside are 50° C and 300° C respectively. Take inner film resistance as 0.0023 K/W	

(B) How many modes of heat transfer, Describe conduction with Fourier's law of conduction.

SECTION - II

Quest.4	(A)	Give the description about natural and forced convection.	6
	(B)	Enlist deferent dimension less numbers, describe any two. OR	6
Quest.4	(A)	What is fuel, classify and give description	6
	(B)	An exterior wall of a house may be approximated by a 0.1 m layer of common brick $(k=0.7 \text{ W/m}^{\circ}\text{C})$ followed by a 0.04m layer of gypsum plaster $(k=0.48 \text{ w/m}^{\circ}\text{C})$. What thickness of loosely packed rock wool insulation $(k=0.065 \text{ w/m}^{\circ}\text{C})$ should be added to reduce the heat loss or (gain) through the wall by 80 percent?	6
Quest.5	(A)	Describe the effect of back pressure on the flow rate of gas through conversing Diverging nozzle.	5
	(B)	A 150 mm steam pipe has inside diameter of 120 mm and outside diameter of 160 mm. It is insulated at the outside with asbestos. The steam temperature is 150°C and the air temperature is 20°C. $h_{(outside)} = 100 \text{ w/m}^2$ °C, $h_{(inside)} = 30 \text{ w/m}^2$ °C, $k_{(asbestos)} = 0.8 \text{ w/m}^2$ °C and $k_{(steel)} = 42 \text{ w/m}^2$ °C. How thick should the asbestos be provided in order to limit the heat loses to 2.1 kw/m ² .	6
		OR	
Quest.5	(A)	Air enters a diffuser with a velocity of 200 m/s. determine speed of sound and Mach number at the diffuser inlet when air temperature is 30° C	5
	(B)	Describe the effect of back pressure on the flow rate of gas through conversing nozzle.	6
Quest.6	(A)	A jet of water having a velocity of 20 m/s strikes a curved vane, which is moving with a velocity of 10 m/s. The jet makes an angle of 20° with the direction of motion of vane at inlet and leaves at an angle of 130° to the direction of motion of vane an outlet. Calculate: (i) Vane angles, so that the water enters and leaves the vane without shock. (ii) Work done per second per unit weight of water striking the vane per second.	6

⁽B) Explain the Equation of combustion

ALL THE BEST

6