Exam	No:	

GANPAT UNIVERSIT

B. Tech. Semester - IV(CBCS) (Marine) Regular Examination May - June 2016 Sub: (2MR403) Mathematics for Marine Engineering

Time: 03 HRS

Total Marks: 60

Instructions:

- (1) This Question papers has two sections. Attempt each section in separate answer book.
- (2) Figures on right indicate marks.
- (3) Be precise and to the point in the answering the descriptive questions.

SECTION - I

Que - 1

(A) Obtain fourier series for f(x) = x, $0 < x < 2\pi$ & deduce $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5}$... [5]

(B) Find fourier series for $f(x) = \begin{cases} -\pi ; -\pi < x < 0 \\ x ; 0 < x < \pi \end{cases}$ [5]

OR

Que - 1

(A) Find fourier series to represent x^2 in the interval (-c, c).

[5]

(B) Find Half – range cosine series for $f(x) = (x-1)^2$ in the interval (0,1) [5]

Que - 2

(A) Use Newton's forward interpolation formula to find y at x = 82.

[5]

X	80	85	90	95	100
у	5026	5674	6362	7088	7854

(B) Find first and second order derivatives at x = 2.2 for given data.

[5]

x	1.2	1.4	1.6	1.8	2.0	2.2
y	3.320	4.055	4.950	6.055	7.390	9.025

OR

Que - 2

(A) Apply Lagrange's interpolation technique for find y at x = 10

[5]

х	5	6	9	11
у	12	13	14	16

(B) Use Newton's Backward interpolation formula to find y at x = 185.

[5]

v	110	1 = 0			
1	140	150	160	170	180
У	3.685	4.854	6.302	8.076	10.225

Que - 3

(A) Evaluate
$$\int_{0}^{6} \frac{dx}{1+x}$$
 with $h = 1$ using both the simpson's rules. [4]

(B) Attempt any Two (each carry three marks)

(1) Obtain Picard's second approximate solution for
$$y' = x^2 + y^2$$
; $y(0) = 0$ [3] for $x = 0.4$

(2) Use Euler's method to find an approximate value of y for
$$x = 1$$
 given [3] that $\frac{dy}{dx} = x + y$; $y = 1$ when $x = 0$ and $h = 0.1$

(3) Apply
$$R - K$$
 fourth order method to find y at $x = 1.4$ given that
$$\frac{dy}{dx} = xy \; ; \; y(1) = 2 \; and \; h = 0.2$$

SECTION - II

Que - 4

(A)Find correlation coefficient and probable error for given data. [5] y

(B)Obtain two regression lines for following data. [5] x y

OR

Que - 4

Calculate rank correlation coefficient for given data. (A)[5] y

(B) Derive the formula for finding correlation coefficient for (x_i, y_i) . [5]

Que - 5

(A) Solve: (i)
$$(D^2 + 9)y = \cos 2x + \sin 2x$$
 (ii) $(D^3 - 6D^2 + 11D - 6)y = e^{-2x}$ [4]

(B) Solve:
$$(D^2 + a^2)y = cosec \ ax \ by \ method \ of \ variation \ of \ parameters.$$
 [3]

(C) Solve:
$$x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$$
 [3]

Que - 5

- (A) Solve $(3x+2)^2y'' + 3(3x+2)y' 36y = 3x^2 + 4x + 1$ [5]
- (B) Solve the following linear simultaneous differential equations. [5] $\frac{dx}{dt} \frac{dy}{dt} y = -e^t, \quad x y + \frac{dy}{dt} = e^{2t}$

Que - 6 Attempt any Two (each carry five marks)

- (A) For studying a characteristic the units of population are 10,12,20,22 [5] & 26. How many samples of size 2 with replacement can be taken from it? Check whether the following results are true or not.

 (i) $E(\bar{x}) = \bar{y}$ (ii) $E(s^2) = S^2$
- (B) 8 units of population are divided in to two stratas. Units of first stratum are 2,8,10,12 and those of the second stratum are 14,16,20, and 26.

 Random samples of size 2 are taken from each stratum then find the value of population mean and variance of stratified mean.
 - (C) (1) Solve y'' + 4y' + 5y = 0 given that y(0) = 2 and y'(0) = y''(0) [3] (2) In standard notation derive $y \bar{y} = b_{yx} (x \bar{x})$ [2]

End of Paper