Seat No.

Ganpat University B.Tech. Sem. IV (MR) CBCS Regular Examination APRIL-JUNE 2017 Sub:(2MR403) Mathematics for Marine Engineering

Time: 3 hrs

Instruction: (1) All questions are compulsory.

Total marks: 60

(04)

(03)

(03)

(10)

(2) Write answer of each section in separate answer books.

(3) Figures to the right indicate marks of questions.

Section – I

Ç	Juestion-1	Attempt	the following.	
---	------------	---------	----------------	--

(A)	Find Fourier series expansion of $f(x) = \begin{cases} -\pi, 0 < x < \pi \\ x - \pi, \pi < x < 2\pi \end{cases}$	(04)
(B)	Find Fourier series of $f(x) = x , -2 < x < 2$.	(03)

(C) Find half range cosine series for $f(x) = (x - 1)^2$, 0 < x < 1 (03)

OR

(A) Expand e^{ax} , $-\pi < x < \pi$ as Fourier series.

(B) Find Fourier series for x^2 in the interval $-\pi < x < \pi$.

Hence deduce that
$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \cdots$$

(C) If
$$f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ \pi - x, \frac{\pi}{2} < x < \pi \end{cases}$$
 show that $f(x) = \frac{4}{\pi} \left(\frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \cdots \right)$ (03)

Question-2 Attempt the following.

(A) Solve
$$\frac{d^2y}{dx^2} - 4y = xe^x$$
 (04)

- (B) Using variation of parameters method, solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$
- (C) Solve Cauchy homogeneous equation $x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y = x^2 \sin(\ln x)$ (03)

(A) Solve simultaneous equations
$$\frac{dx}{dt} = y + 1, \frac{dy}{dt} = x + 1$$
 (04)

(B) Solve
$$(D^2 + 2D - 3)y = e^x + 4e^{2x}$$
 (03)

(C) Find particular integral (P. I.) of
$$\frac{d^3y}{dx^3} - \frac{dy}{dx} = x^3$$
 (03)

Question-3 Attempt the following.

- (A) Give difference between population study and sample study.
- (B) For studying a characteristic the observations of a population are 2, 5, 8, and 9. How many samples of size 2 with replacement can be taken from it? Making a list of all the samples and: (I) verify the result $E(\bar{x}) = \bar{y}$ and (II) calculate $Var(\bar{x})$.
- (C) What are the characteristic of good sample?

Section -II

Question-4Attempt the following.

Using square formula compute regression line of y on x from the following data. **(A)**

23	27	28	29	30	31	33	35	36	39
18	22	23	24	25	26	28	29	30	32

(B) Apply Taylor's series method solve y at x=1.1 and x=1.2 if $y' = x^2 + y^2$, y(1) = 2.3.

(C) Use Newton's interpolation formula to find the value of y for x=1.4 and x=1.8 from the following (03) data.

x	1.1	1.3	1.5	1.7
y	0.21	0.69	1.25	2.61

OR

Obtain the equation of regression line of x on y of the form $x - \overline{x} = b_{xy} (y - \overline{y})$ (04)(A)

(03)

(03)

(03)

(03)

(06)

(B) Using difference formula compute regression line of x on y from the following data.

x -	91	97	108	121	67	124	51	73	111	57
y	71	75	69	97	70	91	39	61 **	80	47

Use Picard's method to solve $\frac{dy}{dr} = x + y^2$, y(0) = 1 up to second approximation. (C)

Question-5 Attempt the following.

(1)	Derive Karl Pearson's rank correlation coefficient	r = -	$n \sum xy - \sum x \sum y$	
(A)		-	$\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 - (\sum y)^2}$	(04)

(B)	Calculat	te the ran	k correlation	tion coef	ficient fo	or the foll	owing da	ata using	Spearma	n's form	ula	(03)
	x	68	64	75	50	64	80	75	40	55	64	
	y	62	58	68	45	81	60	68	48	50	70	

(C) Define probable error in Bivariate distribution and Calculate it for the following distribution. 2 3 4 6 8 6 10 12 14 16 18 y OR +

- Use fourth order R-K method to solve $\frac{dy}{dx} = xy + y^2$, y(0) = 1 to compute y(0.2) with h=0.2. (04)(A)
- **(B)** For the two independent variables x and y if $\sigma_x = 6$ and $\sigma_y = 4$, find the correlation coefficient (03)between x + y and x - y.
- (C) Prove that correlation coefficient is independent of shift origin and change of scale.

Question-6 Attempt the following.

Using Lagrange's interpolation formula find second degree polynomial which passes through the (A) (04) following points.

x	1	3	7		
y	12	16	48		

(B) Attempt any Two.

- Derive the equation of regression line of y on x of the form $y \overline{y} = b_{yx}(x \overline{x})$ (a)
- Use Euler's method to solve differential equation $\frac{dy}{dx} = x + y + xy$, y(0) = 1 to calculate y(1) with **(b)** h = 0.2

(c) Evaluate:
$$\int_{0}^{1} \frac{1}{1+x^2} dx$$
 using (1) Simpson's 1/3 rule and (2) Trapezoidal rule.