Total marks: 70

Ganpat University B.Tech Semester III Mechanical/Mechatronics Engineering Regular Examination Nov/Dec 2011 ME 306 FLUID MECHANICS

Time: 3 Hours Instructions: Show all work clearly and in order. Attempt all questions in both the sections. Figure to the right indicate full marks

Section I

Q. 1

Attempt any one

- (a) i. What are the main types of fluid? Describe each.
 - ii. A solid cylinder has dia = 4 m. Find the metacentric height of cylinder if specific gravity of cylinder material is 0.6 and it is floating in water with vertical axis.
- (b) i. With neat sketch describe the stability concept for submerge bodies.
 - ii. Find kinematic viscosity of an oil having density 981 kg/m^3 . The shear stress at a point in a oil 0.24 N/m^2 and the velocity gradient at that point is 0.2.

Q. 2

Attempt any one

(a) i. Differentiate the following:

- 1. steady flow & unsteady flow
- 2. compressible & incompressible flow
- 3. laminar & turbulent flow.
- ii. The efficiency η of a fan depends on density ρ , viscosity μ of fluid, angular velocity ω and diameter D of rotor and discharge Q. Express η in terms of dimensionless parameter.
- (b) i. The resisting force R depends upon length l, velocity v, viscosity μ , density ρ , and bulk modulus k. Express R in terms of dimensionless parameter.
 - ii. The diameter of a pipe at inlet and outlet are 10 cm and 15 cm, respectively. Find the discharge through pipe if velocity of water flowing through pipe inlet is 5 m/s. Determine the velocity at outlet.

Q. 3

Explain construction and working of pitot tube and derive the expression for velocity of flowing fluid.

(b) With neat sketch explain consruction and working of venturimeter.

[6]

[5]

[6]

[5]

[6]

[6]

[6]

6

[6]

[6]

ME 306 FLUID MECHANICS (Continued)

Section II

Q. 4

Attempt any one

(a)	i.	Describe the details of a flow around a blunt body using a neat sketch.	[6]
	ii.	Draw the laminar and turbulent velocity profiles for the same boundary-layer thickness. What information is available from this diagram?	[6]
(b)	i.	What are the three regimes of viscous flow? Explain with neat sketch.	[6]
	ii.	The accepted transition Reynolds number for flow in a circular pipe is R_{ed} , $crit = 2300$. For flow through a 5-cm-diameter pipe, at what velocity will this occur	*
		at $20^{\circ}C$ for (a) airflow and (b) water flow? Assume suitable data.	[6]

Q. 5

Attempt any one

- (a) An ideal gas flows adiabatically through a duct. At section 1, $p_1 = 140kPa$, $T_1 =$ 260°C, and $V_1 = 75m/s$. Farther downstream, $p_2 = 30kPa$ and $T_2 = 207°C$. Calculate V_2 in m/s and $s_2 - s_1$ in $J/(kg \cdot K)$ if the gas is (a) air, $\gamma = 1.4$, and (b) argon, $\gamma = 1.67$.
- (b) The particle in Fig. 1. is moving supersonically in sea-level standard air. From the two given disturbance spheres, compute the particle Mach number, velocity, and Mach angle.

Q. 6

(a)	Explain the back pressure variation effect for a convergent-divergent nozzle.	[8]
(b)	For steady isentropic flow, if the absolute temperature increases 50 percent, by what	
	ratio does the static pressure increase?	[4]

[4]

[11]

[11]

2011