GANPAT UNIVERSITY

B. TECH. SEM. IV CBCS (ME/MC) EXAMINATION. MAY - 2013

Sub: (2HS 401) Mathematics - III

Time: 3 hrs

Total marks: 70

Instruction: (1) All questions are compulsory

- (2) Write answer of each section in separate answer books.
- (3) Figures to the right indicate marks of questions.

Section - I

Que 1 Answer the following.

(12

- Determine the $f^{ns}: \frac{x}{x^2+y^2} + i \frac{y}{x^2+y^2}$ is Analytic or not . (a)
- Find the Bilinear transformation which maps the points Z = 2, i, -2 onto W = 1, I, -1
- State Cauchy's integral formula and Evaluate (c)

$$\int_{C} \frac{e^{2z}}{(z-1)(z-2)} dz$$
; where C is the circle $|z| = 3$

Que 1 Answer the following.

(12)

- If f(z) is Analytic f^{ns} of z then P.T. $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right] |f(z)|^2 = 4 |f'(z)|^2$.
- Evaluate: $(x-y+ix^2) dz$; along the real axis from z=0 to z=1and then along a line parallel to imaginary axis from z = 1 to z = 1 + i
- If f(z) = u + iv is an Analytic f^{ns} of z then find f(z)(c) $u - v = e^x (\cos y - \sin y)$

Answer the following.

Form a partial differential equation by eliminating arbitrary constant or

(03)

Function from (i) z = (x + a) (y + b) (ii) $z = f(x^2 + y^2)$

Solve : $(y^2 z)p + (x^2 z)q = x y^2$

(04)

Solve by the method of separation of variables : $\frac{\partial^2 z}{\partial x^2} - 2 \frac{\partial z}{\partial y} + \frac{\partial z}{\partial y} = 0$ (c)

- (a) Form a partial differential equation by eliminating arbitrary Function from $f\left(xy+z^2\,,x+y+z\right)=0$
- **(b)** Solve: Solve: $x^2 p + y^2 q = (x + y) z$
- (c) Solve: $\frac{\partial^2 z}{\partial x \partial y} = \sin x \sin y$; for which $\frac{\partial z}{\partial y} = -2 \sin y$ when x = 0 AND z = 0 when y is an odd multiple of $\frac{\pi}{2}$

Que 3 Attempt any three.

- (a) Solve : $[D-2]^2 y = e^{2x} + \sin 2x + x^2$
- (b) Apply the method of variation of parameters to solve: $\frac{d^2y}{dy^2} + y = \sec x$
- (c) Solve Cauchy's homogeneous equation : $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 12 \log x$
- (d) Solve : $(D^2 2D + 1) y = x \sin 2x$

Section - II

Que 4 Answer the following.

- (a) Find (1) $L\left\{e^{5t} + \cos 3t e^{5t} \cos 3t\right\}$ (2) $L^{-1}\left\{\log\left(\frac{s+1}{s-1}\right)\right\}$
- (b) Evaluate (1) $L\left\{\frac{e^{at} \cos at}{t}\right\}$ (2) $L^{-1}\left\{\frac{6s 7}{s^2 + 5}\right\}$
- (c) Solve using the Laplace transforms y'' + 4y = 0, y(0) = 1, y'(0) = 6

Que 4 Answer the following.

- (a) Find the Laplace transform of $f(t) = \begin{cases} 0 & 0 \le t \le 2 \\ 3 & t \ge 2 \end{cases}$
- (b) Evaluate (1) $L\{t^2 \sin 4t\}$ (2) $L^{-1}\{\frac{1-3s}{s^2+8s+21}\}$
- Evaluate $\int_{0}^{\infty} \frac{e^{-t} \sin^{2} t}{t} dt$ using Laplace transforms

Que 5 Answer the following.

(a) Express f(x) = |x|, $-\pi \le x \le \pi$ as Fourier series.

(0.

(04

(12

C12

(12

- (b) Find a Fourier series to represent: $f(x) = \begin{cases} -\pi & -\pi < x < 0 \\ x & 0 < x < \pi \end{cases}$ (04
- Find the half range Cosine series for $f(x) = (x-1)^2$; 0 < x < 1(03)

OR

Answer the following. Oue 5

- (04
- Find a Fourier series to represent for $f(x) = e^{-x}$, $0 < x < 2\pi$, Find a Fourier series to represent: $f(x) = \begin{cases} x & 0 < x < 1 \\ 1 x & 1 < x < 2 \end{cases}$ (04)
- Express $\sin x$ as a cosine series in $0 < x < \pi$ (03)

Attempt any three.

- (12)
- State and prove convolution theorem.
- Find the Laplace transform of the periodic function $f(t) = \frac{t}{2}$, 0 < t < 3 with f(t+3) = f(t)
- Express the following function in terms of unit step function and find its Laplace transforms $f(t) = \begin{cases} t-1 & 1 < t < 2 \\ 3-t & 2 < t < 3 \end{cases}$
- Using Fourier sine integral show that $\int_{\lambda}^{\infty} \frac{1 \cos \pi \lambda}{\lambda} \sin x \lambda \, d\lambda = \begin{cases} \frac{1}{2}\pi & \text{when } 0 < x < \pi \\ 0 & \text{when } x > \pi \end{cases}$ (d)

END OF PAPER