Exam No	
gineering une 2015 Programming Total Mai	·ks: 1
son method	[06]
Falsi method.	[06]
	[06]
$x^2 - 4x - 10 = 0$ with the initial	[06]
	[06]
	[05]
	106

GANPAT UNIVERSITY

B. Tech. Semester: 4th Mechanical Eng CBCS Regular Examination April - Ju

Pro s	A 7.7	2ME405 Numerical Methods & Computer Programming Total Ma	nke. 70
	e: 3 H	Outs	1 KS. 10
111511	ucno	n: 1. All questions are compulsory.	
		2. Assume suitable data if necessary.	
		SECTION - I	
Que.1	(a)	Compute a root of following equation using Newton Raphson method $x^2 - 5x + 6 = 0$, $x_0 = 5$	[06]
	(b)	Solve for a positive root of following function by Regula Falsi method. $x^3 - 4x + 1 = 0$, $0 < x < 1$	[06]
		OR SECTION OF THE PROPERTY OF	
Que.1	(a)	Find the root of following equation using bisection method. $x^2 - 3x - 20 = 0$	[06]
	(b)	Use the secant method to estimate the root of equation $x^2 - 4x - 10 = 0$ with the initial estimates of $x_1 = 4$ and $x_2 = 2$.	[06]
Que. 2	(a)	Use Simpson's 3/8 rule to evaluate 1) $\int_{1}^{2} (x^{3} + 1) dx$ 2) $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin(x) dx}$	[06]
	(b)	and the second of the second o	[05]
	(b)	Derive formula for Trapezoidal rule.	1,001
		OR	1061
Que. 2	(a)	Explain error analysis of forward difference quotient.	[06]
	(b)	Solve the Poisson equation $\nabla^2 f = 2x^2y^2$. Over the square domain $0 \le x \le 3$ and $0 \le x \le 3$	[05]
		$y \le 3$ with $f = 0$ on the boundary and $h = 1$.	
Que.3			[12]
	(a)	Explain following terms: (1) object and class (2) polymorphism (3) data abstraction and encapsulation (4) dynamic binding	

- Explain the scope resolution operator with appropriate Program? (b)
- Write a program to convert decimal number to binary number. (c)

SECTION-II

If P is the pull required to lift a load W by means of a pulley block, Find a linear law of [06] Que.4 the form $P = m\omega + C$ connecting P and W, Using the following data:

P	12	15	21	25
\overline{W}	50	70	100	120

Where P and W are taken in Kg-wt. Compute P when W=150 kg.

Apply Gauss elimination method to solve the equations: X+2Y+3Z-U=10, (b) 2X+3Y-3Z-U=1, 2X-Y+2Z+3U=7, 3X+2Y-4Z+3U=2

OR

[06]

[06]

[06]

105]

[06]

[06]

[06]

Solve by Jacobi's iteration method, the equations 10X+Y-Z=11.19; Que.4 (a) X + 10Y + Z = 28.08; -X + Y + 10Z = 35.61, correct up to two decimal places.

Find the missing term in the following table using Lagrange's interpolation: (b)

I	2)	4
3	9	19 to	81
	3	3 9	0

Using Runge-Kutta method of 4thorder, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2, 0.4. Que.5 (a)

 $\frac{dy}{dy} = \frac{y - x}{1}$ (b) Given $dx^{-}y + x$ with initial condition y=1 at x=0; find y for x=0.1 by Euler's Method. Take 5 intervals.

OR

Using Newton's Divided differences formula, evaluate f(8) and f (15) given Que.5

X X	4	5	7	10	11	13
F(x)	48	100	294	900	1210	2028

Find by Taylor's method the values of y at x=0.1 and x=0.2 to five places of decimal from [05] (b)

 $dy/dx = x^2y-1$, y(0) = 1. Attempt Any Two. [06]

(a) Apply Gauss-Jourdan method to solve the equations Oue.6 X+Y+Z=9; 2X-3Y+4Z=13; 3X+4Y+5Z=40

Using Modified Euler's method find an approximate value of y when x=0.3, given that (b) dy/dx=x + y take initial condition y=I when x=0.

Define: Interpolation, Curve fitting, Numerical Analysis (c)

> End of Paper (02/02)