GANPAT UNIVERSITY

B. TECH SEM- 4th(IV) (ME) CBCS (NEW) REGULAR EXAMINATION- MAY-JUNE 2017 2ME403: NUMERICAL METHODS & COMPUTER PROGRAMMING

TIME: 3 HRS

TOTAL MARKS: 60

10

10

(10)

(05)

(05)

Instructions: (1) This Question paper has two sections. Attempt each section in separate answer book.

- (2) Figures on right indicate marks.
- (3) Be precise in answering with Neat and Clean work.

SECTION: I

Q.1 Answer the following questions.

- (a) Using the bisection method, find an approximate root of the equation $\sin x = 1/x$, that lies (05) between x=1 and x=1.5 (measured in radians). Carry out computations up to the 7th stage.
- (b) Find the real root of the function $x^3+x-1=0$ using false position method upto three (05) decimal and 5th stage.

OR

- Q.1 (a) How secant method differs from false position method? Find the root of the equation (05) $xe^{x} = \cos x$ using secant method correct to four decimal and 5th stage.
 - (b) Find the negative root of equation $x^3-21x+3500=0$ correct to 2 decimal places by (05) newton's method upto root become same in next stage.

Q.2 Answer the following questions.

(a) Apply cramer's rule to solve

10x-7y+3z+5u=6,-6x+8y-z-4u=5,3x+y+4z+11u=2

OR

Q.2 (a) Apply gauss elimination method to solve equations

x+4y-z=-5,x+y-6z=-12,3x-y-z=4

(b) Apply gauss Jordan method

$$x+y+z=9,$$

 $2x-3y+4z=13,$
 $3x+4y+5z=40$

Q.3 Attempt any two from the following.

- (a) Write a script of C++ program for Runge-Kutta method, Draw algorithm for the same.
- (b) Find out solution of three algebraic equation using gauss elimination method by C++ Program
- (c) Prepare a C++ program for euler's method to find out root.

Page 1 of 2

10

SECTION: II

Q.4	Answer the following questions	10
	(a) Mention all the laws to convert non-linear equation into linear equation in curve fitting.	(05)
	(b) Derive equation of method of least square using differential method.	(05)

OR

0.4	(a) Using method of	of least square fit a second	degree parabola to the following data.
-----	---------------------	------------------------------	--

x	1989	1990	1991	1992	1993	1994	1995	1996	1997
<i>y</i>	352	356	357	358	360	361	361	360	359

Q.5 Answer the following questions

(a) Solve by Taylors series method of third order the equation $\frac{dy}{dx} = \frac{x^3 + xy^2}{e^x} y(0) = 1$ at (05)

x=0.1, x=0.2 and x=0.3 and find out the value of y

(b) Find the value of y for x=0.1 by picard's method that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0)=1 (05)

OR

Q.5 (a) Solve the following by Eulers's modified method

$$\frac{dy}{dx} = log(x+y), y(0) = 2 \text{ at } x = 1.2 \text{ and } 1.4 \text{ with } h = 0.2$$

(b)Apply runge-kutta method to find approximate value of y for x=0.2, in steps of 0.1 if (05)

$$\frac{dy}{dx} = x + y^2$$
, given that $y = 1$ where $x = 0$.

Q.6 Attempt any two from the following questions.

(a) Prepare a C++ program for method of least square.

(b) Make a C++ program for the matrix multiplication.

(c) Develop C++ program for the bisection method.

END OF PAPER

10

(10)

10

(05)

105