Student Exam No:

GANPAT UNIVERSITY **B.TECH SEM. VI - MECHANICAL ENGINEERING CBCS REGULAR EXAMINATION MAY/JUNE - 2013** 2ME-601 CONTROL SYSTEM ENGINEERING

Total Marks: 70

[12]

[12]

[04]

Time: 3 Hours Instructions:

1). All questions are compulsory.

- 2). Figures to the right indicate full marks.
- 3). Answers to the two sections must be written in separate answer books.
- 4). Assume all necessary data.

Section - I

Que:-1 Attempt All.

- What is the function of FRL unit in pneumatic system? Explain Lubricator with (A) diagram.
- Explain detailed classification of control systems. **(B)**
- What are the requirements of a good control system? (\mathbf{C})

Attempt All. Que:-1

(A) What is a closed loop control system? Draw its general block diagram and explain aircraft landing system.

OR

- Define transfer function. Prove that for an impulse input to a system, the response of **(B)** the system is transfer function of the system itself.
- Which method is used to solve SFG? Derive it with steps. (C)
- (A) Draw FBD and Nodal diagram for the system shown below. Find out the transfer [07] Oue:-2 function and also derive Force-Voltage analogy for the same.

Explain servomechanism with brief.

OR

- (A) Explain about hydraulic power steering mechanism. Derive the mathematical model Que:-2 [07 for the same.
 - (B) Describe all the basic components of hydraulic system.

Que:-3 Attempt All.

- (A) Explain any four rules of block diagram reduction.
- (B) Write down properties, advantages and disadvantages of transfer function.
- (C) What is analogous system? Derive equations for Force-Current analogy.

Section - II

OR

Que:-4 Attempt All.

- (A) Explain different types of standard test signals.
- (B) Define the following terms: Path, Node, Loop and Non touching loop.
- Write down the steps for constructing root locus. (C)

Que:-4 Attempt All.

- (A) Using Mason's formula determines X2/X1.
 - G4 G₈ G H_2 H
- Derive the equation of steady state error for first order system. **(B)**
- (C) Determine the stability of the transfer function S⁵+S⁴+2S³+2S²+3S+5=0

Que:-5	(A)	Derive expression for time response specification for the second order system	10.01
	(B)	Sketch the polar plot of $G(S) = \frac{10S}{(S+1)}$	[06]
		OR	[05]
Que:-5	(A)	For the following transfer function: $G(s) = 100/(s^2+15s+100)$, find the peak time	[06]
		percent overshoot, settling time and rise time.	[oo]
	(B)	Derive the unit step response for the first order system	[05]
Que:-6	Atte	mpt All.	
	(A)	Derive expression for K _e , K _p and K _d	[12]
	(B)	Do comparison between signal Flow Graph and Block Diagram	
C	(C)	Write down the steps for constructing bode plot.	
100		END OF DADED	

PAPER

[12]

[12]

[04]

[12]