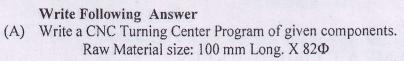
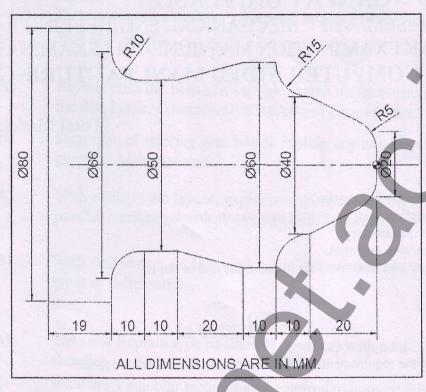
Student Exam. No.

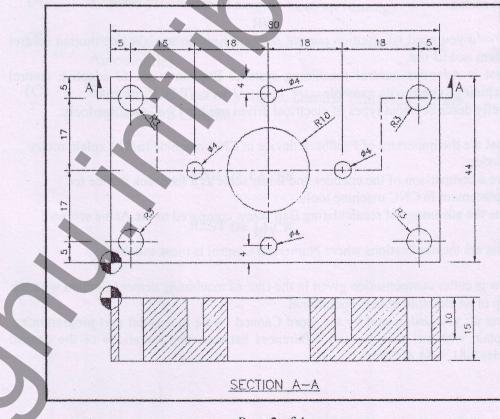
GANPAT UNIVERSITY B.TECH. SEM. VIIITH MECHANICAL ENGINEERING CBCS REGULAR EXAMINATION MAY/JUNE-2014 EXAMINATION 2ME-803 COMPUTER AIDED MANUFACTURING

Time: 3 Hrs]


[Total Marks: 70


Instructions:-

- 1. Attempt all Questions.
- 2. Figure to the right indicate full marks.
- 3. Answers to the two section must be written in separate drawing papers
- 4. Assume suitable data if necessary.
- 5. Draw neat sketch wherever essential.
- 6. Programming codes (G and M Codes) are given at the end of paper


SECTION -

Q.1	(A)	What are the requirements of the Structure in CNC machine tools?	(4)
	(B)	What factor should be kept in mind during the design of spindles for CNC machine tools?	(4)
	(C)	Discuss how sliding friction is converted into rolling friction in CNC machines with neat sketch	(4)
Q.1	(A)	Why do you need NC motion control system? Explain straight line motion control system and its use	(4)
	(B)	What is Adaptive control machining system? Explain types of adaptive control machining system with example.	(4)
	(C)	Briefly describe about types of electrical drives used in CNC machine tools.	(4)
Q.2	(A)	What are the important of Feedback device in CNC machine tool? Explain rotary encoder.	(4)
	(B)	Give a comparison of the encoder and linear scale as a feedback device for displacement in CNC machine tools.	(4)
	(C)	State the advantage of recalculating Ball screw compared to the Acme screws	(4)
Q.2	(A)	What are the applications where Numerical Control is most suitable?	(4)
	(B)	How is cutter compensation given in the case of machining center? Explain with the help of an example how is operational	(4)
~	(C)		(4)
		A-A BOLLE	

(B) Write a CNC Machining Center Program of given components. Raw Material size: 125 mm X 125 mm X 10 mm.

Page 2 of 4

Q.3

(6)

()

SECTION - II

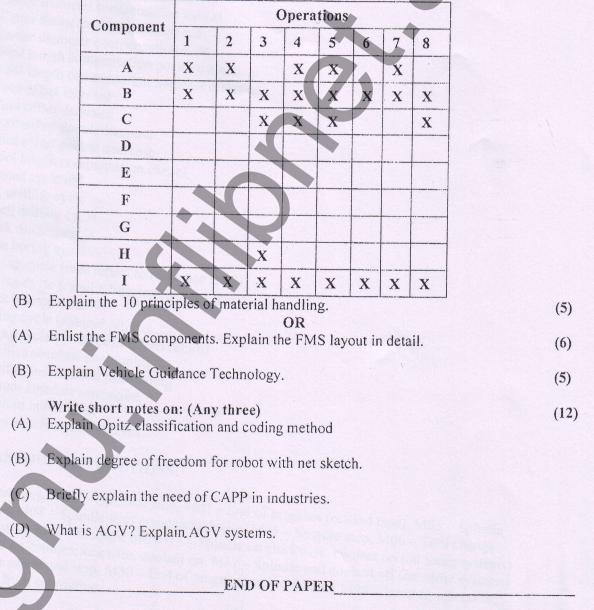
- What is GT? Why group technology more important in the present manufacturing (4) 0.4 (A) scenario?
 - Give brief description about the retrieval type CAPP method. (B)
 - Explain the structure used in classification & Coding system: (C)

OR

(4)

(4)

(4)


(4)

(4)

(6)

- What is FMS? What make it flexible? Explain with one example Q.4 (A) (B)
 - Define Robot? Explain physical configuration of robots.
 - Enlist basic parts of robot & explain functionality of each part. (C)

Q.5 (A) What is PFA? Apply the rank order clustering technique to the part-machine incidence matrix in the following table to identify logical part family and machine groups. Parts are identified by letter and machines are identified numerical.

Page 3 of 4

Q.6

PREPARATORY FUNCTIONS (G CODES):

G00 - Rapid transverse positioning

G01 - Linear interpolation (federate movement)

G02 - Circular interpolation clockwise

G03 - Circular interpolation counterclockwise

G04 – Dwell

G10 - Tool length offset value

G17 - Specifies X/Y plane

G18 - Specifies X/Z plane

G19 - Specifies Y/Z plane

G20 – Inch data input (on some systems)

G21 - Metric data input (on some systems)

G27 - Reference point return check

G28 - Return to reference point

G29 - Return from reference point

G30 -Return to second reference point

G40 - Cutter diameter compensation cancel

G41 - Cutter diameter compensation left

G42 – Cutter diameter compensation right

G43 – Tool length compensation positive direction

G44 - Tool length compensation negative direction

G45 – Tool offset increase

G46 - Tool offset decrease

G47 - Tool offset double increase

G48 – Tool offset double decrease

G49 - Tool length compensation cancel

G80- Canned cycle off

G81- Std. drilling cycle

G82- Dwell drilling cycle

G83 – Peak drilling cycle

G84 – Fine boring cycle

G85 – Boring cycle (feed return to reference level)

G86 - Boring cycle (rapid return to reference level)

G87 – Back boring cycle

G88 – Boring cycle (manual return)

G89 – Boring cycle (dwell before feed return)

G90 - Specifies absolute positioning

G91 – Specifies incremental positioning

G92 - Program absolute zero point

G98 – Return to initial level

G99 – Return to reference (R) level.

MISCELLANEOUS (M) FUNCTIONS:

M00 – Program stop, M01 – Optional stop, M02 – End of program (rewind tape), M03 – Spindle start clockwise, M04 – Spindle start counterclockwise, M05 – Spindle stop, M06 – Tool change M08 – Coolant on, M09 – Coolant off, M13 – Spindle on clockwise, coolant on (on some systems) M14 – Spindle on counterclockwise, coolant on, M17 – Spindle and coolant off (on some systems) M19 – Spindle orient and stop, M30 – End of program, memory reset, M98 – Jump to subroutine M99 – Return from subroutine

Que