Time: 3 Hours

GANPAT UNIVERSITY

B. Tech. Semester: VIII (Mechanical Engineering)

CBCS Regular Examination April-June 2016

Student Exam No.

Subject: 2ME 801 ALTERNATIVE ENERGY SOURCES

Time: 3 l	Hour	S		Total Marks: 70						
Instructi	on:	1. Attempt at	ll questions.							
		2. Don't writ	e anything on the question paper.							
			n- programmable scientific calculato	or is permitted						
			t sketches and assume suitable additi							
			the right indicate full marks of the q							
		J. Pigures 10	SECTION I	juestion.						
Que. – 1	(a)	Calculate Local Apparent time (LAT) and Declination at Mehsana (location longitud 77°30'; E, latitude 24° 20'N) corresponding to 12.30 IST on July 24. Equation of time correction (ETC =5'13")								
	(b)	What are the types of Ocean Thermal Energy Conversion (OTEC) systems? Explain any one of them briefly.								
Que 1	(a)		OR a neat sketch the construction and work advantage and disadvantages.	uction and working Janta model biogas plant.						
	(b)	Explain briefly the factors which affect the performance of a flat-plat collector. 6								
Que 2	(a)	Write short notes on various solar thermal energy storage systems.								
	(b)									
		system:			Ĭ					
			Material	Glass						
			Number of cover	4						
			Thickness of each cover	4 mm						
			Refractive index of glass relative to air	1.55						
			Extinction coefficient of glass	16 m ⁻¹						
			OR							
Que. – 2	(a)	Explain briefly any two of the following: (i) Horizontal axis wind machines. (ii) Savonius types wind mill (iii) Darrieus type wind mill (iv) Propeller type wind mill								
	(b)	Explain briefl	y "Evacuated collectors"		4					
	(c)	Write a short abroad"	note on "the environmental impacts of C	Geothermal energy in India and	3					

(a) Calculate the energy content of the wind per square meter for following situation:

Location:	Indore
Month:	June
Height above ground:	10.9 m
Take $\rho = 1.20 \text{ kg/m}^3$	

(b) Explain briefly the following:

(i) Thermal -chemical storage, and (ii) Electrical storage.

SECTION-II

- A compound parabolic collector (CPC) 1.5 m long has an acceptance angle of 20°. The surface of the absorber is flat with a width of 15 cm. Evaluate the concentration (a) ratio, the aperture height and the surface area of the concentrator.
 - Explain briefly, with neat Sketches, any two of the following concentrating collectors: (ii) Fresnel lens collectors
 - (i) Paraboloidal dish collectors

6

6

6

6

5

3

8

8

(iii) Flat-plate collector with adjustable mirrors (iv) Parabolic trough collector

- What is the MHD generation? How does it work? Que. -4 (a)
 - Write short notes on (i) PV hybrid system and (ii) Grid-interactive solar PV system.
- Determine the sunset hour angle and day-length at a location latitude of 32° on March Oue. -5 (a) 30.
 - Write a short note on the global scenario of tidal energy.

- (a) What is "photovoltaic effect"? Explain briefly. Que. -5
 - The following data relate to a propeller turbine:

T	he following data relate to a pr	opener taremer
T	Velocity of wind at 18 °C	21m/s (At atmospheric Pressure)
1	C. Line Diameter	10 m and,
	Operating Speed of Turbine	40 r.p.m. at maximum efficiency.
	- F	

Calculate:

- Total Power Density in the wind stream. (i)
- Maximum obtainable power density. (ii)
- Reasonably obtain power density. (iii)
- Total Power generated. (iv)
- Calculate the solar swing angle on May 1 from 0800 hrs to 1200 hrs in Pune(18.53°N) Que. -6 (a)
 - Define the following angles:
 - (i) Latitude angle (ii) Hour angle (iii) Zenith angle (iv) Surface azimuth angle

Wind Data

Percentage frequency distribution of hourly wind speed

Interval	1	dore A	ii hoi	T.									
(kmph)	J	F	M	A	M	J	J	A	S	0	N	D	
00	10	16.4	9.9	9.3	3.2	2.3	2.3	3.3	7.1	14.9	6.9		Annu
00-02	3.8	1.7	1.9	1.4	1.6	1.1	0.6	0.3	2.4	3	1	8	7.7
02-04	5.3	1.9	3	0.9	0.9	0.6	0.5	0.3	3.1		5.9	1.9	2.1
04-06	5.1	4.1	2.7	1.5	1.3	0.7	1.1	0.4	3.3	3.4	4.1	2.2	2.1
06-08	4.3	3.6	2.1	2.2	2	1.4	1.2	0.8	3.1	4.2	4.5	4.4	2.7
08-10	2.6	0.5	1.1	0.6	1.3	0.4	0.9	0.8		3.9	4.7	5.8	2.9
10-12	6.8	5.4	3.8	4.4	3.9	2.9	3.4		0.6	1.2	1.7	1.2	1
12-14	6.9	6.4	5.4	3.2	4	3.9	3.5	1.7	5.2	5.2	6.2	8.9	4.8
14-16	9.2	8.9	9	5.1	6.3	7	7.7	2.2	4.5	5.9	7.9	.8.5	5.1
16-18	9.2	10	8.8	5.2	6.2	7.1		4.2	6.5	8.2	10.4	10.8	7.7
18-20	8.7	9.2	9	5.3	6.5	6.2	8.3	5.4	7.5	9.6	13.6	9.9	8.3
20-22	10.8	11.4	10.1	10.2	10.3	10.4	9.2	6	7.2	8.3	12.9	9.1	8.1
22-24	6	5.7	7.7	6.8	7.4	7.7	11.3	10.5	10.1	9.7	9.7	10.5	10.4
24-26	4.9	4.9	8.2	8.2	8	9.6	9.5	7.4	7.3	7.3	4.5	7.5	7.2
26-28	1.6	3.4	3.2	7.1	4.3		10.8	10.1	9.5	6.8	2.9	5.6	7.6
28-30	1.9	1.9	4.9	5.8		6.4	3.6	4.6	4.4	3.1	1.5	3.2	4
30-32	1.6	3	3.8	8.5	5.1	5.2	7.4	7.9	4.3	2.4	1.1	1.5	4.3
32-34	0.5	0.6	2	4.5	7.5	8.6	7	10.5	7	1.8	0.7	0.7	5.2
34-36	0.4	0.6	1.5	4.3	4.5	3.8	3.7	6.1	2.5	0.7	0.4	0.2	2.6
36-38	0.4	0.3	1.2	2.5	5.7	3.8	3	5.6	2.5	0.4	0.3		2.4
38-40		0.1	0.5	1.1	4.1	3.7	2.6	5.1	1.2		0.1		1.9
40-42		0.1	0.3		1.7	2	1.1	2.4	0.6				0.8
42-44			0.2	1.4	2.2	3.1	0.7	2.2	0.1				0.5
44-46				0.3	0.8	0.6	0.2	0.8					
46-48				0.2	0.7	0.4		0.7					
10.40					0.1			0.3					

Sensor 10.9 m above ground