Student Exam. No._

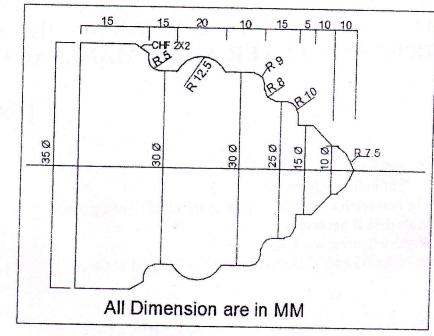
GANPAT UNIVERSITY B.TECH. SEM. VIIITH MECHANICAL ENGINEERING CBCS REGULAR EXAMINATION MAY/JUNE-2017 EXAMINATION 2ME803 COMPUTER AIDED MANUFACTURING

Time: 3 Hrs]

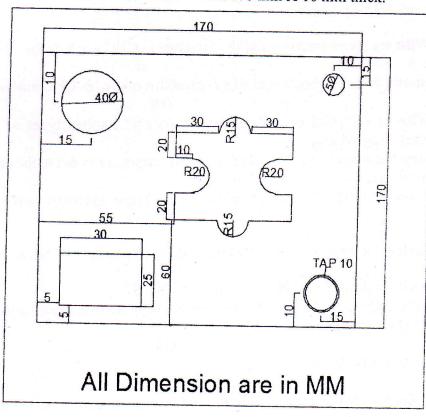
[Total Marks: 70

Instructions:-

- 1. Attempt all Questions.
- 2. Figure to the right indicate full marks.
- 3. Answers to the two section must be written in separate drawing papers
- 4. Assume suitable data if necessary.
- 5. Draw neat sketch wherever essential.
- 6. Programming codes (G and M Codes) are given at the end of paper


SECTION - I

Q	.1 (A)	what is the importance's of work holding device in CNC machine tool? Explain work holding devices.	(4)
	(B)	What are the requirements of the Structure in CNC machine tools?	(4)
	(C)	Briefly describe about types of electrical drives used in CNC machine tools. OR	(4)
Q.	1 (A)	machining system.	(4)
	(B)	State the advantages of recalculating ball screws compared to the conventional Acme screws.	(4)
	(C)	Enlist the feedback device. Explain any one linear and rotary feedback device.	(4)
Q.2	2 (A)	Explain the general criteria for testing the performance of CNC machine tool.	(4)
	(B) (C)	What are the different between MCS and WCS? Enlist software use for CAM and Explain the types of integration used for CAD and CAM integration.	(3) (4)
Q.2	(A)	OR Explain ATC in CNC Machine tool.	(4)
	(B)	Define CNC? Explain the objective and function of CNC machine tool.	(3)
	(C)	Explain the different between BTR system of DNC and Special Machine controlled unit system of DNC.	(4)


1/4

.3 Write Following Answer,

 (A) Write a CNC Turning Center Program of given components. Raw Material size: 105 mm Long. X 36Φ

(B) Write a CNC Machining Center Program of given components. Raw Material size: 170 mm X 170 mm X 10 mm thick.

Depth for all operations are 10 mm.(Throughout cut)

Q.3

2/4

(5)

SECTION - II

Q.4	(A)	What is a Flexible Manufacturing system? What renders it so flexible?	(4)
	(B)	Write appropriate steps for automation of foundry shop using USA automation strategies.	(4)
	(C)	Explain the Pocket identification in generative type CAPP system.	(4)
		OR	
Q.4	(A)	Write merits of Computer Aided Manufacturing and how it helps to world-class manufacturing and manufacturing Excellence.	(4)
	(B)	Enlist the FMS components. And Explain the FMS layout configurations in detail.	(4)
	(C)	Explain the structure used in classification & Coding system:	(4)
Q.5	(A)	What is Group Technology? What are the favorable conditions for Applying GT? Explain the benefits of Group Technology with their area of application.	(4)
	(B)	Define Robot? Explain physical configuration of robots.	(3)
	(C)	What is a part family? What is the attribute use for part classification? OR	(4)
Q.5	(A)	What is AS/RS system? Explain types of AS/RS and its applications.	(6)
			(

(B) What is PFA? Apply the rank order clustering technique to the part-machine (5) incidence matrix in the following table to identify logical part family and machine groups. Parts are identified by letter and machines are identified numerical.

Parts						87 .		
		A	B	C	D	E	F	G
	1	1					1	
	2		1			1		1
Machine	3	1			1		1	
	4		1	1			1	
	5				1			1
	6	1					1	

Q.6 Write short notes on: (Any three)

(A) Enlist basic parts of robot & explain functionality of each part.

- (B) Explain Optiz coding system with example.
- (C) What is AGV? Explain AGV systems.
- (D) Explain the 10 principles of material handling.

END OF PAPER

(12)

3/4

PREPARATORY FUNCTIONS (G CODES):

G00 – Rapid transverse positioning

movement)

- G02 Circular interpolation clockwise
- G03 Circular interpolation counterclockwise
- G04 Dwell
- G10 Tool length offset value
- G17 Specifies X/Y plane
- G18 Specifies X/Z plane
- G19 Specifies Y/Z plane
- G20 Inch data input (on some systems)
- G21 Metric data input (on some systems)
- G27 Reference point return check
- G28 Return to reference point
- G29 Return from reference point
- G30 -Return to second reference point
- G40 Cutter diameter compensation cancel
- G41 Cutter diameter compensation left
- G42 Cutter diameter compensation right
- G43 Tool length compensation positive direction
- G44 Tool length compensation negative direction
- G45 Tool offset increase
- G46 Tool offset decrease
- G47 Tool offset double increase
- G48 Tool offset double decrease
- G49 Tool length compensation cancel
- G80- Canned cycle off
- G81- Std. drilling cycle
- G82- Dwell drilling cycle
- G83 Peak drilling cycle
- G84 Fine boring cycle

- G85 Boring cycle (feed return to reference level)
- G86 Boring cycle (rapid return to reference
- G87 Back boring cycle
- G88 Boring cycle (manual return)
- G89 Boring cycle (dwell before feed return)
- G90 Specifies absolute positioning
- G91 Specifies incremental positioning
- G92 Program absolute zero point
- G98 Return to initial level
- G99 Return to reference (R) level.

MISCELLANEOUS (M) FUNCTIONS:

- M00 Program stop
- M01 Optional stop
- M02 End of program (rewind tape)
- M03 Spindle start clockwise
- M04 Spindle start counterclockwise
- M05 Spindle stop
- M06 Tool change
- M08 Coolant on
- M09 Coolant off
- M13 Spindle on clockwise, coolant on (on some systems)
- M14 Spindle on counterclockwise, coolant on
- M17 Spindle and coolant off (on some systems)
- M19 Spindle orient and stop
- M30 End of program, memory reset
- M98 Jump to subroutine
- M99 Return from subroutine