GANPAT UNIVERSITY B.TECH SEM. III - MECHATRONICS ENGINEERING CBCS REGULAR EXAMINATION NOV/DEC - 2012 2MC305/MC304 ANALOG CIRCUITS & DEVICES

Time: 3 Hours

Instructions:

- 1). All questions are compulsory.
- 2). Figures to the right indicate full marks.
- 3). Answers to the two sections must be written in separate answer books.
- 4). Assume all necessary data.

Section - I

Que:-1 Attempt All.

- (A) Explain the differentiator.
- (B) Explain the square wave generator.
- (C) Draw the equivalent circuit of an Opamp and ideal voltage transfer curve and Write down the characteristics of the ideal Opamp.

OR

Que:-1 Attempt All.

	(A) (B) (C)	Explain summing and averaging amplifier using non-inverting configuration. Explain the phase shift oscillator. Explain the DC voltmeter.	
Que:-2	(A)	Explain the Sample and Hold circuit using Opamp.	[06]
	(B)	Explain the square wave oscillator using 555 timer.	[05]
		OR	
Que:-2	(A)	Prove that gain of differential amplifier is same as gain of inverting amplifier	[07]
	(B)	Explain the pulse stretcher using 555 timer.	[04]
Que:-3	Atte	mpt All.	[12]

- (A) For loaded differential amplifier, $\beta = 200$, Rc = 7.5K Ω , R_E = 7.5K Ω , Vcc = +15V, V_{EE} = -15V, R_L = 15K Ω , V₁ = 10mV, V₂ = 0 V.
 - Find load current and load voltage.

(B) For the voltage follower amplifier having a parameter connected with it is as following,

 $R_1 = 1K\Omega$, $R_F = 10K\Omega$, A = 200000, $Ri = 2M\Omega$, $Ro = 75\Omega$, $f_0 = 5Hz$,

Supply voltage = $\pm 15V$, o/p voltage swing = $\pm 13V$.

Calculate AF, RiF, RoF and fF.

Total Marks: 70

[12]

[12]

(C) Explain following terms.

- 1. Input offset Current.
- 2. Large Signal Voltage gain.
- 3. CMRR.
- 4. Power consumption.

Section - II

Que:-4 Attempt All.

- (A) Analyze VDB amplifier using π model.
- (B) Explain variation in current gain.
- (C) What do you mean by distortion of signals? Explain swing of Q-point.

OR

Que:-4 Attempt All.

[12]

[12]

	(A)	How any amplifier can be converted in π model for AC analysis?	
	(B) (C)	How to create set of collector curves and load line? Explain importance of Q pint. Explain the procedure to recognize saturation with example.	
Que:-5	(A)	Explain Zero crossing detectors with figure.	[06]
	(B)	How capacitive, transformer and direct couplings are different? Explain with figure.	[05]
		<u>OR</u>	
Que:-5	(A)	Explain multistage amplifier and swamped amplifier.	[06]
	(B)	Differentiate between class A, class B and class C operations.	[05]
Que:-6	Atte	mpt Any Three.	[12]
	(A) (B)	If C=22 μ F, R=2.3 K Ω and frequency varies from 22 Hz to 20 KHz, than check Whether it is good coupling or not, if it is not than what can be done? In CE amplifier R _C =10 K Ω , R _B =100 K Ω , V _{CC} = +20 V, V _{BB} = +10 V and	
		β_{DC} =60, find in which region transistor is operating?	
	(C)	For an Emitter bias circuit $R_c=1$ K Ω , $R_E=2.2$ K Ω , $V_{CC}=+15$ V, $V_{BB}=+6$ V and $\beta_{DC}=110$, find location of Q-point.	
[12]	(D)	For VDB amplifier $R_1 = 10 \text{ K}\Omega$, $R_2 = 2.2 \text{ K}\Omega$, $R_C = 3.6 \text{ K}\Omega$, $R_E = 1 \text{ K}\Omega$, $V_{CC} = +10 \text{ V}$, $\beta_{DC} = 200$, check whether it is Stiff voltage divider or not?	
	.($V_{12} = -15V, H_1 = 15K\Omega, V \approx 10mV, V_2 = 0.V.$	

END OF PAPER