GANPAT UNIVERSITY B.TECH. (MC) SEM – IV CBCS REGULAR THEORY EXAMINATION SUBJECT: 2HS401 MATHEMATICS – III (Common with ME) MAY – JUNE 2012 TOTAL MARKS: 70

TIME: - 3 HOURS INSTRUCTIONS:

1.All questions are compulsory.

- 2. Write answer of each section in separate answer books.
- 3.Figures to the right indicate marks of questions.

SECTION-I

	All sample and following:	Ouestion-4
Question-1	Attempt the following:	(12)
(A)	Derive $L\{\cos at\}$ and Evaluate: $L\left\{\frac{Sint}{t}\right\}$	(A) ((8)
(B)	Evaluate: (1) $L\left\{\left(t+2\right)^2 e^t\right\}$ (2) $L^{-1}\left\{\frac{1}{S^4 - 2S^3}\right\}$	
(C) Question-1	Solve differential equation $y''' + 2y'' - y' - 2y = 0$, $y(0) = y'(0) = 0$, $y''(0) = 6$ OR	(12)
(A)	Derive $L\left\{e^{at}\right\}$ and Evaluate: $L^{-1}\left\{log\left(\frac{S^2+1}{S^2}\right)\right\}$	
(B)	If $L\{f(t)\} = \overline{f(s)}$ then $L\left\{\int_{0}^{t} f(u) du\right\} = \frac{\overline{f(s)}}{s}$	
(C) Question-2	Evaluate : $L\{sint . u(t - \pi)\}$ Attempt the following:	(4)
(A)	Find a Fourier series to represent : $f(x) = x^2$, $-\pi < x < \pi$	(03)
(1) (12)	Hence deduce : $\frac{\pi^2}{12} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$	(04)
(B)	Find a Fourier series for the function $f(x) = \int 1 - \frac{2x}{\pi}$; $0 < x < \pi$ Expand : $f(x) = \pi x - x^2$ in a half range sine series in the interval $(0, \pi)$	(04)
Question-2 (A)	OR Find a Fourier series for the function: $f(x) = e^{-x}$, $\begin{bmatrix} -2, 2 \end{bmatrix}$	(03)
(B)	Find a Fourier series to represent the function $f(x) = \begin{cases} -1 & ; & -\pi \le x \le 0\\ 1 & ; & 0 \le x \le \pi \end{cases}$	(04) (A)
(14)	Hence deduce : $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots$	(04)
(C) Question-3	Find the half range cosine series to represent $f(x) = x^2$, $0 \le x \le \pi$ Attempt any three:	()) (12)
(A)	Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & ; & x \le 1 \\ 0 & ; & x > 1 \end{cases}$	

	Seat No	
(B)	Find Fourier sine transform of $e^{- x }$. Hence show that: $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi e^{-m}}{2}$; $m > 0$	
(C)	State & Prove convolution theorem.	
(D)	A problem in Mathematics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{4}$ respectively, what is the probability that the problem will be solved.	ITM NST 1.AI 2.W
	Section – II	
Question-4	4 Attempt the following:	(12)
(A)	Solve: $(D^2 + 3D + 2)y = e^{-x}$	Ques
(B)	Solve: $(D^3 - 3D^2 + 9D - 27)y = e^x + cosx$)
(C)	Solve by the method of variation parameters: $y'' - 6y' + 9y = e^{3x} / x^2$	
Question-4	4 OR	(12)
(A)	Solve: $(D^2 + 3)y = x^2 cosx$)
(B)	Solve: $\frac{d^3y}{dx^3} - \frac{dy}{dx} = x^3$	
(C)	Solve the Cauchy-Euler differential equation : $x^2 \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx^2} - 4y = x^4$	
Question-5	5 Attempt the following: $dx^2 dx$	(12)
(A)	Solve: $x^2 p + y^2 q = (x + y)z$	(12)
(EO) (B)	Solve: $(y+z)p + (z+x)q = (x+y)$	
(C)	Using method of separation of variables, solve the differential equation $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 3u$,	
	given that $u(0, y) = e^{-5y}$	
Question-5	(R) Find a Fourier series for the function $(x) = \int_{-\infty}^{x} f(x) dx$	(12)
(A)	Solve: $y^2 z \frac{\partial z}{\partial x} - x^2 z \frac{\partial z}{\partial y} = x^2 y$	
(B)	Solve: $x(y^2 - z^2)p + y(z^2 - x^2)q = z(x^2 - y^2)$	
(C)	Solve the equation, by method of separation of variables $u_{xy} = -u_x$.	
Question-6	Attempt the following:	
(A)	Determine whether the function $f(z) = \begin{cases} \frac{z^2 + 3iz - 2}{z + i}, & z \neq -i \\ 5, & z = -i \end{cases}$ is continuous?	(03)
(B)	Find analytic function whose real part is $u = e^{-x}(x\cos y + y\sin y)$	(04)
(C)	Prove that $u = x^2 - y^2$ and $v = \frac{y}{x^2 + y^2}$ are harmonic functions of (x, y) , but are not	(04)
	harmonic conjugates $Page 2 07 2$	

END OF PAPER