Student Exam No:

GANPAT UNIVERSITY B.TECH SEM. IV - MECHATRONICS ENGINEERING CBCS REGULAR EXAMINATION MAY/JUNE - 2013 2MC403/MC403 DIGITAL CIRCUITS & DEVICES

Time: 3 Hours

Instructions:

1). All questions are compulsory.

- 2). Figures to the right indicate full marks.
- 3). Answers to the two sections must be written in separate answer books
- 4). Assume all necessary data.

Section - I

OR

Que:-1 Attempt All.

- (A) Explain the master slave RS flip flop.
- (B) Explain direct inputs with example.
- (C) Explain successive approximation A/D converters.

Que:-1 Attempt All.

- (A) Explain serial Transfer from register A to register B.
- (B) Construct modulo 6 counter in two different ways.
- (C) Explain DAC.
- Que:-2 (A) Design a counter for following state diagram. Use JK flip flops.

(B) Draw the logic diagram for 4-bit register with parallel load.

OR

Que:-2

(A) Design a BCD synchronous counter using T flip flop.(B) Draw the logic diagram for 4 bit universal register.

[12]

[12]

Total Marks: 70

[07]

[04]

[07]

[04]

Que:-3 Attempt All.

- (A) Which flip flop has an ability to toggle or change the state? Explain it.
- (B) Write down the excitation table for RS, JK, D and T flip flops.

(C) Explain the RTL gate.

Section - II

OR

Que:-4 Attempt All.

(A) Simplify following by K-Map:

F (W, X, Y, Z) =
$$\sum (1, 3, 7, 11, 15)$$

D (W, X, Y, Z) = $\sum (0, 2, 5)$

(B) Explain full subtractor.

(C) Prove that (B + BC) (B + B'C) (B + D) = B.

Que:-4 Attempt All.

	(A)	Solve using K-map.	
		$F(A,B,C,D,E) = \sum (0,2,4,6,9,11,13,15,17,21,25,27,29,31)$	
	(B)	Implement the following function with a multiplexer.	
		$F = A \Theta B \Theta C.$	
	(C)	Show that $AB + (A + B)^* = A \Theta B$ by truth table.	•
Que:-5	(A)	Solve by tabulation method.	[06]
		$F(A, B, C, D) = \sum (0, 1, 6, 7, 8, 9, 13, 14, 15).$	[00]
	(B)	Design and implement a 4 bit binary to gray converter.	[05]
		OR	
Que:-5	(A)	Design a logic circuit for the following function using tabular method. $F(A, B, C, D) = \sum m(0, 1, 4, 7, 13, 14) + d(5, 8, 15)$	[07]
		() - , - , - , - , - , - , - , - , - , -	

(B) Design 4 X 16 decoder using two 3 X 8 decoder.

Que:-6 Attempt All.

- (A) Multiply 1100₂ by 1001₂ using computer method.
- (B) Compare digital system V/S analog system.
- (C) Explain the equivalence logic gate.

(D) Draw the logic diagram for AND, OR and NOT gate using NOR gate.

END OF PAPER

[12]

[04]

[12]