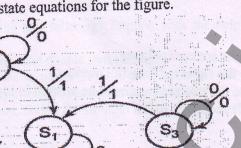
GANPAT UNIVERSITY

B. Tech. Semester: IV Mechatronics Engineering

Regular Examination May 2014

2MC403 DIGITAL CIRCUITS & DEVICES

Time. 5 Hours		
Instruction:		
1). All qu	estions are compulsory.	
2). Figure	es to the right indicate full marks.	
3). Answe	ers to the two sections must be written in separate answer books.	
4). Assun	ne all necessary data.	
		•
	Section - I	
Oue 1	Attempt all.	12
Vac 1	A Design an 8 to 1 line multiplexer.	4
	B Solve following:	4
	1. $x+x=x$	
	2. x+1=1	
	3. $(x+y)' = x' \cdot y'$	
	4.	
	C Design a BCD to decimal decoder.	4
	OR	41
Que 1	Attempt all.	12
Que 1	A Implement the following function by MUX.	4
	F (A, B, C,D) = \sum (0, 1, 3, 4, 8, 9, 15)	
	B Design and explain a 4 bit BCD adder.	4
	C Solve the following by tabulation method & compare answer with K-	4
٠	map.	
	$F(A, B, C, D) = \sum (0, 1, 2, 8, 10, 11, 14, 15)$	
One 2	Attempt all.	11.
Que, as	A Design and explain Excess 3 to BCD code converter using MSI.	4
	B Discuss the various types of logic gates in detail.	4
	C Explain the concept of priority encoder.	3
	OR OR	4011
Que 2	Attempt all.	11
	A Discuss the concept of carry propagation and solution for the same.	4
	B Explain 4-bit binary to grey code converter.	4
	C Design a half subtractor circuit.	3
Que 3	Attempt all.	12
Kar n	A Design & explain magnitude comparator.	12 4
	B Design & implement a full adder with its implementations.	4
	C Simplify the following Boolean function using K-map.	4
	$F(A, B, C, D, E) = \sum (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)$	


Que. - 4 Attempt all.

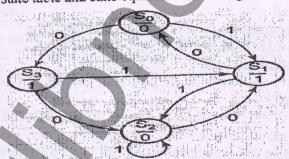
12

A With the use of the excitation table carry out the following conversion:

- 1. SR to JK
- 2. SR to D
- 3. T to JK
- 4. D to SR

B Find out the state table and state equations for the figure.

OR

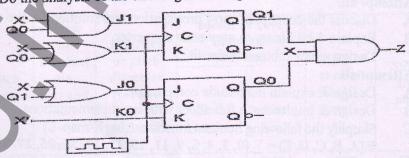

Que. - 4 Attempt all.

12

A Design the binary counter having the following repeated sequence 0,1,3,2,6,4,5,7 continuously. Use RS flip flop.

6

B Find out the state table and state equations for the figure.



Oue. - 5 Attempt all.

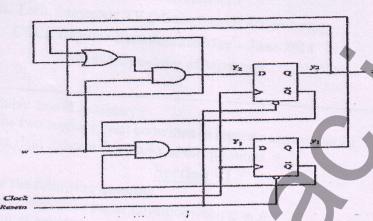
11

5

A Do the analysis of the circuit given in figure.

B A sequential circuit with two D flip-flops, A and B; two inputs, x and y; and one output, z, is specified by the following next-state and output equations:

$$A(t+1) = x^{2}y + xA$$


$$B(t+1) = x^{2}B + xA$$

 $z = \dot{B}$

- (a) Draw the logic diagram of the circuit.
- (b) List the state table for the sequential circuit.
- (c) Draw the corresponding state diagram.

Que. - 5 Attempt all.

A Do the analysis of the circuit given in figure.

11

5

12

6

2

B A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations:

$$J_A = x$$
 $K_A = B'$
 $J_B = x$ $K_B = A$

(a) Derive the state equations A(t+1) and B(t+1) by substituting the input equations for the J and K variables.

(b) Draw the state diagram of the circuit.

Que. - 6 Attempt all.

1. Convert (325)₈ to decimal.

2. Convert (78)₁₀ to binary number.

3. Perform subtraction using 1's compliment. (1010100)₂-(1000011)₂

B PN flip flop has four operations, no change, clear to 0, set 1 and compliment, when inputs P and N are 00,01,10 and 11 respectively.

1. Draw excitation table and truth table

2. Derive the characteristic equations.

C Reduce the number of states in the following state table and tabulate the

Present	Next state	Next state	Output	Output
state	x=0	x=1	x=0	x=1
a	f	b	0	0
ь	d	С	0	0
c	f	е	0	0
d	g	a	1	0
e	d	С	0	0
f	f	ь	1	· 1
g	g	h	0	1
h	g	a	1	0

END OF PAPER