GANPAT UNIVERSITY B. TECH SEM-IV (Mechatronics) REGULAR EXAMINATION- APRIL-JUNE 2016 2MC401: Digital Circuits & Devices

TIME: 3 HRS

TOTAL MARKS: 60

Instructions:	(1)	This (Question	paper	has two	sections.	Attempt	each see	ction in s	eparate answer b	book.
---------------	-----	--------	----------	-------	---------	-----------	---------	----------	------------	------------------	-------

(2) Figures on right indicate marks.

(3) Be precise and to the point in answering the descriptive questions.

SECTION: I

	Q.1		Attempt all.	(10)
		(A)	Design and explain 4 bit adder for addition of two BCD numbers.	(04)
		(B)	Design and explain 4 bit Magnitude Comparator.	(04)
		(C)	Prove the Distributive law and De Morgan's law.	(02)
	~ .		OR	
)	Q.1	(1)	Attempt all.	(10)
		(A)	Design a 4 bit binary to grey code converter using SSI.	(04)
		(B)	Design a BCD to Excess 3 code converter with a BCD to decimal decoder and four OR gates.	(04)
		(C)	Design a Full adder with two 3 x 8 decoders and OR gates	(02)
	Q. 2		Attempt all.	(10)
		(A)	Design an 8 to 1 line Multiplexer.	(04)
		(B)	Design a binary parallel adder and explain the solution for the carry propagation delay time.	(04)
		(C)	Reduce the following Boolean function to the required number of literals	(02)
			[(CD)' + A]' + A + CD + AB to three literals.	(02)
			OR	
	Q.2		Attempt all.	(10)
>		(A)	Design and explain a quadruple 2 to 1 line multiplexer.	(04)
		(B)	Solve by tabulation method.	(04)
			$F(R, S, T, U) = \Sigma(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15)$	
		(C)	Reduce the following Boolean function to the required number of literals.	(02)
			(A+C+D)(A+C+D')(A+C'+D)(A+B') to four literals.	
	Q. 3	1.44	Attempt All.	(10)
		(A)	Design and explain a circuit to add two bits with its implementations.	(03)
		(B)	Solve by K-map. $F(T, R, A, C, F) = \Sigma (0, 2, 4, 6, 0, 11, 13, 15, 17, 21, 25, 27, 20, 21)$	(03)
		(\mathbf{C})	Design and explain a 4×16 decoder with two 2 × 9 decoders	100
		(0)	besign and explain a 4 X to decoder with two 5 X 8 decoders.	(04)

SECT	ION	1:	Π
------	-----	----	---

Q. 4	(A) (B) (C)	Attempt all. Explain in detail all the logic gates used in digital circuits. Write a short note on RTL. Explain the characteristics of IC digital logic families.	(10) (04) (04) (02)					
		OR	(10)					
Q. 4	(A)	Attempt all. Discuss in detail the standard design procedure of designing a combinational circuit						
	(B) (C)	Write a short note on DTL. Draw the logical circuit for $\mathbf{F} = \mathbf{AB} + \mathbf{CD} + \mathbf{E}$ using NAND gates only.	(04) (02)					
Q. 5	(A)	Attempt all.Solve the following conversion.1.Octal to Decimal2.Decimal to Binary(Using Double Dabble)3.Octal to Hexadecimal(a) 657.603(b) 678.320	(10) (06)					
	(B)	Solve the following. 1. Add +40.75 to - 40.75 using 12 bit 2's complement. 2. Represent -99 and -77.25 in 8 bit 1's complement.	(04)					
		OR	(10)					
Q. 5	(A)	Attempt all. Differentiate the following. 1 Sequential circuits and Combinational circuits	(06)					
	(B)	 2.Synchronous and Asynchronous circuits Solve the Followings. 1 Add -47.25 to +55.75 using 2's complements. 	(04)					
		2. Express -73.75 in 12 bit 2's complements form.						
Q. 6	(A)	Attempt All. Explain the digital computer with block diagram.	(10) (03) (03)					
	(II) (B) (C)	Design and explain J-K flip flop. Explain the R – S flip flop with logical circuit diagram.	(03)					

END OF PAPER