serimo sede: 03/05/2016

Exam	No:
------	-----

GANPAT UNIVERSITY

B.TECH. SEM- IV (ME-MC) REGULAR EXAMINATION APRIL-JUNE 2016 2HS402: Mathematics for Mechanical & Mechatronics Engineering

Time: 3 HRS.

Total Marks: 60

Instructions:

- (1) This Question paper has two sections. Attempt each section in separate answer book.
- (2) Figures on right indicate marks.
- (3) Be precise and to the point in answering the descriptive questions.

SECTION: I

Question: 1

(A) Evaluate: (i)
$$L\left\{2t^3 + e^{-2t} + t^{4/3}\right\}$$
 (ii) $L\left\{e^{-t}\sin^2 2t\right\}$

(B) Find
$$L^{-1}\left\{\frac{s}{s^4 + 4a^4}\right\}$$
 [3]

(C) Evaluate
$$\int_0^\infty \frac{e^{-t} \sin^2 t}{t} dt$$
 using laplace transform method. [3]

OR

Question: 1

(A) Find laplace transform of
$$f(t) = \begin{cases} t, & 0 < t < 4 \\ 5, & t > 4 \end{cases}$$
 [4]

(B) Apply convolution theorem to find
$$L^{-1}\left\{\frac{1}{(s+1)(s+3)}\right\}$$
 [3]

(C) Solve the diffrential equation
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} = -8t$$
; $y(0) = 0$, $y'(0) = 0$ [3]

Question: 2

(A) Obtain fourier series for
$$f(x) = x$$
, $0 < x < 2\pi$ hence deduce $\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \cdots$ [4]

(B) Develope fourier series for
$$f(x) = \begin{cases} -\pi, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{cases}$$
 [3]

(C) If
$$f(x) = x^2$$
, $0 < x < 2$ then find half range sine series. [3]

OR

Question: 2

(A) Expand
$$f(x) = e^x$$
 as a fourier series in the interval $(0,1)$

(B) Find fourier series for
$$f(x) = \begin{cases} \pi + x, & -\pi < x < 0 \\ \pi - x, & 0 < x < \pi \end{cases}$$
 and $f(x + \pi) = f(x)$ [5]

Question: 3 Attempt any Two

(A) Express the function
$$f(x) = \begin{cases} 1, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$
 as a fourier integral and hence evaluate [5]

$$\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} \, d\lambda \text{ and } \int_0^\infty \frac{\sin x}{x} \, dx$$

(B) Evaluate: (i)
$$L^{-1}\left\{\log\left(\frac{s+1}{s-1}\right)\right\}$$
 (ii) $L\left\{t^2\cdot\sin^2t\right\}$ [5]

(C) Find fourier series to represent
$$\cosh ax$$
 between $-\pi$ to π .

SECTION: II

Question: 4

(A) Solve: (i)
$$(D^2 - 5D + 6)y = \sin 3x$$
 (ii) $(D^3 - D^2 - 6D)y = x^2 + 1$ [4]

(B) Apply method of variation of parameters to solve
$$y'' + a^2y = \sec ax$$
 [3]

(C) Solve the initial value problem
$$y'' + y' - 2y = 0$$
, $y(0) = 4$ and $y'(0) = -5$ [3]

OR.

Question: 4

(A) Solve:
$$(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$$
 [5]

(B) Solve the following simultaneous differential equations.

$$\frac{dx}{dt} - \frac{dy}{dt} - y = -e^t, \qquad x - y + \frac{dy}{dt} = e^{2t}$$
 [5]

Question: 5

(A) Check the analiticity of functions (i)
$$f(z) = \sin z$$
 (ii) $f(z) = z^{3/2}$ [4]

(B) Find fixed points, normal forms & decide the type of transformation
$$w = \frac{2z-5}{z-4}$$
 [3]

(C) Find the analytic function whose real part is
$$e^{2x} (x \cos 2y - y \sin 2y)$$
 [3]

OR

Question: 5

(A) Evaluate $\int_c |z| dz$ along the sides of square with vertices (0,0),(1,0),(1,1) & (0,1)

(B) Evaluate
$$\int_C \frac{\cos \pi z^2 + \sin \pi z^2}{(z+1)(z-2)} dz$$
 where $C : |z| = 2$ [3]

(C) Check whether the given function is harmonic or not.
$$u(x,y) = y + e^x \cos y$$
 [3]

Question: 6 Attempt any Two

(A) Solve:
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$
 [5]

(B) Form PDE by eliminationg arbitrary function and arbitrary constant. [5]

(i)
$$f(x^2 + y^2 + z^2, lx + my + nz) = 0$$
 (ii) $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

(C) (I) Solve:
$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} + y = \log x$$
 [3]

(II) If
$$P(A) = 0.3$$
, $P(B) = 0.78 \& P(A \cap B) = 0.16$ then find $P(A \cup B) \& P(A' \cap B')$ [2]