Student Exam No:

[12]

GANPAT UNIVERSITY B.TECH SEM. VII- MECHATRONICS ENGINEERING **REGULAR EXAMINATION NOV/DEC - 2011** A model boy edition and MC-702 ROBOTICS **Total Marks: 70**

Time: 3 Hours

Instructions:

- 1). All questions are compulsory.
- 2). Figures to the **right** indicate full marks.
- 3). Answers to the two sections must be written in separate answer books.
- 4). Assume all necessary data.

Section - J

Attempt All. Oue:-1

(A) Define rise time, maximum overshoot, accuracy and compliance.

- Explain the various motions associated with the robot with neat sketches. **(B)**
- The mechanical gripper uses friction to grasp a part weighting 25N. The co-efficient (C) of friction between the part and the gripper pad shown in fig. is 0.3. The gripper is accelerating down with a acceleration $= 9.81 \text{ m/s}^2$. The diameter of the piston is of pneumatic cylinder is 65mm. Assume a factor of safety = 1.5 and assume the lengths $L_1 = 60$ mm, $L_2 = 40$ mm, $L_3 = 15$ mm and $L_4 = 45$ mm. Calculating the following
 - i). The gripper force to retain the part
 - ii). Actuation force required to achieve this gripper force

OR

Page 1 of 4

Que:-1 Attempt All.

- (A) Explain the difference between the Cartesian configuration and cylindrical configuration of a robot.
- (B) A DA hydraulic cylinder is used to actuate one of the linear arm joint of a Cartesian robot. The diameter of the piston is 15 cm and the diameter of the rod is 6 cm. A pump supplies hydraulic oil at a rate of 30 cm³/sec with a pressure of 40 N/cm². Determine
 - i). The force that can be supplied by the piston in the forward and the reverse strokes
 - ii). The maximum velocity with which rod can operate in forward and reverse directions
- (C) Explain different modes of a robot language operating system

Que:-2 Attempt All.

(A) A certain robot manipulator has a mechanical joint described by the differential [06] equation specifying the position of the output link as a function of time

$$\frac{3.26\,d^2y}{dt^2} + \frac{17.5\,dy}{dt} + 44.2y =$$

Where y gives the output response and X is the function describing the force applied.

- i). Write the characteristic equation
 - ii). What are the roots of the characteristic equation?
 - iii). Determine the type of response.
 - iv). Write the transfer function.
 - v). Write the natural frequency and the resonant frequency.

OR

- vi). Calculate the damping ratio.
- (B) Explain the gear-and-rack method for actuating the robot gripper.

Que:-2 Attempt All.

A

(C)

	(A)	List the application of robotics. Explain any one application with neat sketch.	[06]
	(B)	Explain the cam-and-follower method to open and close the gripper.	[05]
		and the second s	
Que:-3	Attempt Any three.		[12]

What is a need of position sensors in control system of a robot? Explain any one sensor.

Write a short note on on-off controller used in robotics.

Discuss the leadthrough programming method for a robot.

What is spatial resolution of a robot?

Page 2 of 4

[05]

D

For a given equivalent matrix R, show that equivalent angle of rotation θ about the k-**(B)** axis and direction of axis k are given by - not see

[04]

[05]

[06]

$$\theta = \cos^{-1} \left[\frac{(r_{11} + r_{22} + r_{33}) - 1}{2} \right] \qquad \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix} = \frac{1}{2 \sin \theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$
Where, $R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$

Que:-5 Attempt All.

- (A) Explain construction & working of vidicon tube camera.
- (B) Write a short note on force sensing wrist.

OR

Attempt All. Que:-5

(A)	Write down desirable features of sensors.	[05]
(B)	Draw block diagram of machine vision system and explain each block in detail.	[06]
		[12]

Que:-6 Attempt Any three.

- (A) Define all DH parameters with figure.
- Explain how to find vector representing a point in space when frame is rotated and **(B)** translated frame with respect to initial frame.
- (C) Derive rotational transformation matrices for rotation about x and y axis.
- (D) Write a short note on proximity and range sensors.

END OF PAPER

Page 4 of 4

Section - II

Que:-4 Attempt All.

(A) Draw frame assignment and obtain DH parameter for each joint link. Also find the [08] forward kinematics model for following configuration.

Que:-4 Attempt All.

(A) Find DH parameters for robotics arm shown and find direct kinematic model.

[08]

