Evning Dote: 27/11/2014.

Student Exam No: _____

GANPAT UNIVERSITY B.TECH SEM. VII - MECHATRONICS ENGINEERING REGULAR EXAMINATION NOV/DEC - 2014 2MC-702 ROBOTICS

Time: 3 Hours

Total Marks: 70

106]

Instructions:

- 1). All questions are compulsory.
- 2). Figures to the **right** indicate full marks.
- 3). Answers to the two sections must be written in separate answer books.
- 4). Assume all necessary data.

<u>Section – I</u>

<u>OR</u>

Que:-1 Attempt All.

(A) Find general Inverse kinematics solutions for the 3 DOF Cartesian Robotics Arm. [12]

Que:-1 Attempt All.

Draw frame assignment and obtain DH parameter for each joint link. Also find the [08] (A) forward kinematics model for following configuration.

(B) Which are the different causes for existence of multiple solutions of joint variables? [04] Explain in detail.

Que:-2 Attempt All.

- (A) Find Forward kinematics of Spherical Robotics Arm.
- (B) The homogeneous transformation matrices between frames $\{i\}-\{j\}$ and $\{i\}-\{k\}$ are [05]

	0.866 0.500 0 0	0.500 0.866 0 0	0 0 1 0	$\begin{bmatrix} 1 & 1 \\ -1 \\ 8 \\ 1 \end{bmatrix}; ^{*}T_{i} =$	$=\begin{bmatrix}1\\0\\0\\0\end{bmatrix}$	0 0.866 0.500 0	0 -0.500 0.866 0	$\begin{bmatrix} 0\\10\\-20\\1 \end{bmatrix}$
Determine _j T [*]	x							

Que:-2 Attempt All.

Que:-4

(A) A vector P = 3i - 2j + 5k is first rotated by 90° about x-axis, then by 90° about z-axis. [05 Finally, it is translated by -3i + 2j - 5k. Determine the new position of vector P.

[05]

[12]

(B) Explain DH notation and derive equation of DH parameter.

Que:-3 Attempt Any three.

Attempt All.

- (A) What is mapping? State any one case of mapping.
- (B) Write a short note on screw transformation.
- (C) The end-effectors of a robot is rotated about fixed axes starting with a yaw of $-\pi/2$, followed by a pitch of $-\pi/2$. What is the resulting rotation matrix?
- (D) Give Detail About Fundamental rotation Matrices.

Section - II

[12] List and explain in brief robot co-ordinate systems (Cartesian, Cylindrical, polar, (A) spherical & Revolve system) Define degree of freedom. Explain degree of freedoms associated with a robot wrist **(B)** with a neat sketch. Write down different desirable features of sensors in robotics. (C) OR Que:-4 Attempt All. [12] (A) Define stability, accuracy, repeatability and compliance of a robot. (B) List and explain each object descriptor in machine vision system. (C) Write short note on Touch sensors Oue:-5 Attempt All. Write a short note on CCD camera. (A) [06] (B) Explain a vacuum cup gripper. [05] OR Oue:-5 Attempt All. List the application of robotics. Explain any one application with neat sketch. (A) [06] **(B)** Write a short note on optical encoders. [05] Que:-6 Attempt Any three. [12] (A) Architecture of Robotic vision system. Compare a robot manipulator with human hand for their capabilities. **(B)** (C) Explain components required for Robotics/Machine vision. Enlist Robotic applications in which end effecter is a tool. **(D)**

END OF PAPER

Page 2 of 2