Date: 17/11/2016. Student Exam No. **GANPAT UNIVERSITY**

B. Tech. Semester: VII (Mechatronics) Engineering

Regular Examination Nov-Dec 2016

2MC705: Digital Image Processing & Machine Vision

Total Marks: 70

Time: 3 Hours

Instructions:

- Start new question from new page only.
- 1. Number to the right indicates full marks of question/sub-question. 2.
- Draw figure neat and clean wherever desired. 3.

Section - I

Attempt ALL. Que. -1

Find edges in an image 'a' using canny edge detection method. (A)

a =	194	180	132	85	
	150	44	16	16	
	27	13	12	12	
	-				

Determine global threshold value using iterative method. **(B)**

	70	23	14	12	41	26	
	6	58	6	12	9	46	
f =	23	61	26	23	9	61	
	162	185	200	52	0	52	
	238	229	255	107	26	49	

Show result of region growing algorithm for following image. Assume that [03] (C) difference between neighbor pixels is not greater than 4. The seeds are indicated by underlines.

	1	0	7	8	7]			
	0	1	8	9	8			
=	0	0	7	9	8			
	0	1	8	8	9			
	1	2	8	8	9			
OR								

Attempt ALL. Oue. - 1

Determine global threshold value using Otsu's method for following 3 bit [06] (A) image.

$$\mathbf{f} = \begin{bmatrix} 0 & 2 & 5 & 3 \\ 1 & 4 & 5 & 6 \\ 5 & 6 & 1 & 2 \\ 2 & 2 & 7 & 5 \end{bmatrix}$$

Page 1 of 3

[03]

[12]

[06]

[12]

- (B) What is redundancy? Name different types of redundancy in an image and [03] Explain in detail "How do redundant data result due to coding process?"
- (C) Use region splitting and merging operation for segmenting following 4X4 [03] image. Assume maximum change in intensity is not more than 2 for splitting the region and difference in average intensities is less than and equal to 2 for merging two regions.

 $a = \begin{bmatrix} 8 & 6 & 3 & 4 \\ 6 & 7 & 2 & 2 \\ 8 & 7 & 9 & 5 \\ 8 & 6 & 5 & 6 \end{bmatrix}$

Que. - 2 Attempt ALL.

(A) Find line parameters for following image using Hough transform. Assume [05] parameter space sampling as 45° along slope and 1 row/column along distance axis.

	0	1	0	0
f =	1	0	1	0
	0	0	0	1
	0	0	0	1

(B) For 2-bit image, encode the image a = [0 1 2 2 3] using arithmetic coding [03] process if probability of each intensity is as given below.

Gray level, i	0	1	2	3	
Probability, P _i	0.2	0.2	0.4	0.2	

(C) Design filter using Laplacian operator to detect discontinuities in an image. [03]

OR

Que. - 2 Attempt ALL.

(A) Find prewitt response for following image

	1	1	1	1	
f =	1	1	12	1	
	1	15	2	1	
	1	3	13	1	

- (B) Discuss lossy predictive coding with necessary block diagram of encoder [03] and decoder. Explain each block briefly.
- (C) For 3-bit image, probability of each gray level value of occurrence is as [03] under.

Gray level, i	0	1	2.	3	4	5	6	7
Probability, P _i	0.3	0.4	0.1	0.06	0.1	0	0	0.04

Determine Huffman code for the image.

Que. - 3 Attempt ALL.

- (A) Explain how gray code can be used to obtain better reduction in data for image compression using bit plane decomposition?
- (B) Why are channel encoder and decoder needed? Explain how channel encoding and decoding process can be implemented.
- (C) Draw a block diagram of image compression model and explain each term briefly.

Page 2 of 3

[12]

[11]

[11]

[05]

2	2.8		TT
SP	ct1	\mathbf{n}	 11
NE	CII	UII	A.A.

4

)ue. – 4	Atte	mpt ALL									[12]
	(A)	(A) Illustrate with an example: 1. Zooming by replication,								[04]	
	(B)	Explain imag sketch.	ging geo	2. metry w	zoomi ith two	coordin	ate syst	ems con	cept wit	h a neat	[04]
	(C)	Illustrate the	process	of thresh	holding	and grey	y level s	licing w	ith an ex	ample.	[04]
						OR					
Que. – 4	Atte	mpt ALL									[12]
	(A)	Compare th Butterworth	e basic low pass	freque filter ar	ency de nd Gaus	omain f sian low	filters: pass fil	Ideal le	ow pass	s filter,	[04]
	(B)	Equalize the	given hi	istogram	•	1		1			[04]
		Gray level	0	1	2	3	4	5	6	7	
		n _k	120	110	0	100	0	50	0	0	
	(C)	Discuss the c	oncept	of image	negativ	ve and bi	t plane	slicing v	with an e	xample.	[04]
Que 5	Attempt ALL								[11]		
	(A)	A camera on (1, 2, 5). Th in XYZ. If p coordinates (to be 3 mm.	gimbal e camer an angl Cartesia	system i a center e is 60 c an form)	s enable is displ legree d of a wo	ed to par aced from & tilt any orld poin	n and til m gimb gle is 30 t (1, 1,	t. The gi al center) degree 5). Ass	mbal centric by (0.5) , find out ume foca	nter is at ,0.6,0.7) at image al length	[04]
	(B)	Describe the	constru	ction and	d worki	ng of vid	licon tul	be with a	a neat sk	etch.	[04]
	(C)	Exemplify th	ne conce	pt of ma	chine v	ision wit	h diagra	ım.			[03]
						OR					
Que. – 5	Attempt ALL								[11]		
	(A)	Exemplify th	ne proce	ss of dig	ital ima	ge proce	ssing w	ith nece:	ssary ste	ps.	[04]
	(B)	Explain: 1. S 2. F	Simple in ilters us	nage for ed in spa	mation atial dor	model, nain ima	ige enha	incemen	t		[04]
	(C)	Write in brie	fabout	camera c	calibrati	on proce	dure.				[03]
Que. – 6	Atte	empt ALL									[12]
	(A)	What will had contrast stret	appen to tched als	o the dyr gorithm a	namic ra are mor	ange of a than or	an imag ne? Exp	ge if all blain wit	the slope h an illus	es in the stration.	

Explain the concept of imaging transformation and inverse imaging **(B)** transformation.

Discuss about following: 1. Neighbors of pixels, 2. Regions, 3. Adjacency, 4. Connectivity between pixels (C)

*END OF PAPER **

Page 3 of 3