Ganpat University

B. Tech SEM VIII Mechatronics Engineering CBCS Regular Examination April - June 2016 2ME704 Computer Aided Design

Duration: 3hr

Instructions:

Marks: 70

- 1. Write your answer to the point and precisely.
- 2. Draw neat and clean sketch.
- 3. Assume suitable data if it is required and state in your answer book clearly.

SECTION - 1

Q.1 Answer the following Questions.

	(a)	Explain mechanism of displacing graphics on display device.	[03]
	(b)	Derive the bresenham's decision variable equations for Circle	[05]
	(c)	For end point of a line are (10, 20) and (20, 28). Find pixels by using DDA	[03]
		algorithm.	[04]
		OR	
Q.1		Answer the following Questions.	
	(a)	What is scan conversion? What are the side effects of scan conversions?	[02]
	(b)	Write Digital Differential Algorithm for preparing line	[05]
	(c)	Write C program for representing parabola.	[0.4]
Q.2		Answer the following Questions.	[04]
	(a)	Explain properties of Homogeneous coordinate in transformation matrix	[03]
	(b)	Obtain composite transformation matrix for effecting a translation in the X	[03]
		Y, Z direction by -1 , $-m$, $-n$ respectively and followed successfully by $+\theta$	[04]
		rotation about X axis and $+\Phi$ rotation about y axis on the homogeneous	
		coordinate position vector $[x y z 1]$.	
	(c)	For triangle ABC having co-ordinates A(4.4), B(7.4) and C(4.9) Determine	[0.4]
		new vertex position if it is reflected about a line $Y = 5X + 3$	[04]
		OR	
Q.2		Answer the following Questions.	
	(a)	How the order of multiplication affect the final result of 2D and 3D	[02]
		transformation? Explain with example.	[03]
	(b)	Derived composite transformation matrix for mirror about arbitrary line in	[04]
		plane.	[04]
	(c)	Derive equation of cubic spline in matrix form.	[04]
Q.3		Answer the following Questions. (Any Three)	[12]
	(2)	What are the reasons for the indian of the dian of the second for the indian	[12]
	(a) (b)	Differentiate between percentic	
	(u)	curves.	
	(c)	Explain properties of spline & Bezier curves.	
	(d)	Briefly describe about solid modeling techniques and explain any one technique in detail.	
		SECTION II	

Page 1 of 2

Q.4 Attempt all questions.

- What is shape function? Explain it briefly for 1D element and sketch them. [05] (a) [07]
- Derive the element stiffness matrix for bar element. (b)

OR

Attempt all questions. 0.4

- Why shape function is selected as function of polynomial type? Explain and [05] (a)also give one example.
- Derive the all element force vector for 1D element from work potential [07] (b) principle.

Attempt all questions.

- Write down the properties of global stiffness matrix. (a)
- How boundary treatment is applied in FEM? Explain elimination method. [03] (b) [06]
- Determine the node displacements in problem as shown in figure (5c). (c)

Attempt all questions. Q.5

- What is importance of element connectivity table information? (a)
- Write a short note on penalty approach. (b)
- The torsional element shown in Figure OR(5c) has a solid circular cross (c) section and behaves elastically. The nodal displacements are rotations θ_1 and θ_2 and the associated nodal loads are applied torques T₁ and T₂. Use the potential energy principle to derive the element stiffness.

Figure OR(5c)

Attempt all questions. Q.6

- Write a short note on temperature load vector in truss problem. (a)
- How truss element is different from 1D bar element and briefly explain how (b) element stiffness matrix are being created?

All the best

Page 2 of 2

[12]

[02]

[03]

[06]

[02]

Q.5