Exam	No:	
------	-----	--

GANPAT UNIVERSITY

B. Tech. Semester: VIII Mechatronics Engineering

Regular Examination April - June 2016

2MC802 COMPUTER INTEGRATED MANUFACTURING TIME - 3 HOURS TOTAL MARKS- 70

INSTRUCTION:-

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Make suitable assumptions wherever necessary.
- 4) Programming code (G and M codes) is given at the end of paper.

SECTION-I

Q-1 (a) A flexible manufacturing cell consists of three plus a load/unload stations. The load/unload station is stations1 using two servers (material handling workers). Station 2 performs milling operations and consists of two server(two CNC milling machine). Station 3 performs vertical milling operations with three servers(three identical CNC vertical milling machine). Station 4 has two server that performs drilling (two CNC drill press). The three stations are connected by a part handling system that has three work carriers. The mean transport time is 3.5 min. The FMC produces four parts A, B, C and D, the part mix fractions are process routings for the three parts are presented in the table below. The operation frequency Fijk = 1.0 for all operations. Determine: a) maximum production rate of the FMC, b) corresponding production rates of each product.

Part j	Part Mix Pj	Operatio n k	Description	Stati, on i	Process Time tijk (min)
A	0.2	1	Load	1	4
		2	Mill	2	15
		3	V.Mill	3	14
		4	Drill	4	13
		5	Unload	1	3
	0.3	1	Load	1	4
В		2	Drill	4	12
		3	Mill	2	16
		4	V.Mill	3	11
		5	Drill	4	17
		6	Unload	1	3
	0.5	1	Load	1	4
С		2	Mill	2	10
		3	Drill	4	9
		4	Unload	1	3
D	0.35	1	Load	1	4
		2	V.Mill	3	18
		3	Drill	4	8
		4	Unload	1	3

Suppose it is decided to increase the utilization of the two non-bottlenecks machining stations in the FMS by introducing a new past, part E, into the part mix. If the new product will be produced at a rate of 2 units/hr, what would be the ideal process routing (sequence and processing times) for part E that would increase the utilization of the two non-bottleneck machining stations to 100% each? The respective production rats of part A, B, C, and D will remain the same. Disregard the utilization of the load/unload station and the part handling system.

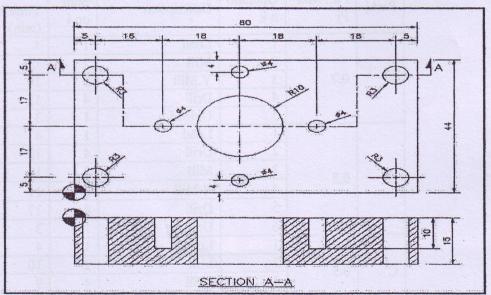
(b) Define the following terms of FMS 1) FMM 2) FMC 3) FMG 4) FPS.

[4]

OR

Q-1 (a) Enlist the FMS Elements and explain about FMS layout.

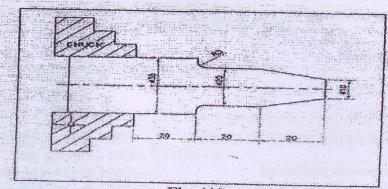
[6] [6]


(b) Consider the following machine-component incidence matrix with 7 machines and 5 components. Obtain the final machine-component cells using Rank Order Clustering Algorithm.

		Com	ponent			
		1	2	3	4	5
Machine	1	0	1	0	1	0
	2	1	0	0	0	1
	3	0	1	1	0	0
	4	1	0	0	0	1
	5	0	0	1	1	0
	6	0	0	0	0	1
	7	0	1	1	1	0

Q-2

(a) Write a CNC Drilling part program for a following Component. Raw material size: 40 X 80 X 20 mm.


[6]

(b) What is Group Technology? What are the favorable conditions for Applying GT? Explain the benefits of Group Technology with their area of application.

[5]

OR

	Q-3	(b) (a)	Explain MICLASS system. Attempt Any Three. Define following terms of AGV.	[5] [12]				
		(b)	1) Guide path 2) Routing 3) Scheduling 4) Idle vehicle What is automatic storage system? Why it required? Compare AS/RS with Carousel storage system.					
		(c) (d)	Explain methods used for grouping part families. What are the formats used for writing programs?					
	Q-4		SECTION-II					
	V-1	(a) · (b)	What do you know about Preset tooling for NC turning machine? What are the various features to be taken care of while designing a CNC tool? Explain classification of DBMS.	[12]				
		(c)	What is Adaptive control machining system? Explain types of adaptive control machining system.					
	Q-4		OR					
		(a) (b) (c)	Discuss how sliding friction is converted into rolling friction in CNC machines. What is requirement of Database management system in CIM? What do you mean by CAD/CAM integration? Explain application integration.	[12]				
	Q-5	(a) (b)	Explain Machine Control Unit in NC system. What are the various approaches available for CAPP? Explain in brief Retrieval type CAPP.	[11]				
	Q-5		OR					
		(a) (b)	What do you understood in CIM? Which type of Activities of CIM? Explain the open & close loop system in CNC machine tool.	[11]				
	Q-6	(a)	Attempt Any Three Define manual part programming. What is meant by tool offset, tool length offset	[12]				

and cutter diameter compensation?

- (b) Explain following terms (a) JIT (b) MRP-I (c) MRP-II (d) ERP.
- (c) Define DNC? Explain types of DNC machine tool.
- (d) What is Network and Networking? Explain most usable type of network.

*******END OF PAPER*****

PREPARATORY FUNCTIONS (G CODES):

- G00 Rapid transverse positioning
- G01 Linear interpolation (federate movement)
- G02 Circular interpolation clockwise
- G03 Circular interpolation counterclockwise
- G04 Dwell
- G10 Tool length offset value
- G17 Specifies X/Y plane
- G18 Specifies X/Z plane
- G19 Specifies Y/Z plane
- G20 Inch data input (on some systems)
- G21 Metric data input (on some systems)
- G22 Salary zone programming
- G23 Cross through safety zone
- G27 Reference point return check
- G28 Return to reference point
- G29 Return from reference point
- G30 -Return to second reference point
- G40 Cutter diameter compensation cancel
- G41 Cutter diameter compensation left
- G42 Cutter diameter compensation right
- G43 Tool length compensation positive direction
- G44 Tool length compensation negative direction
- G45 Tool offset increase
- G46 Tool offset decrease
- G47 Tool offset double increase
- G48 Tool offset double decrease
- G49 Tool length compensation cancel
- G50 Scaling off
- G51 Scaling on
- G73 Peak drilling cycle
- G74 Counter tapping cycle
- G76 Fine boring cycle
- G80 Canned cycle cancel
- G81 Drilling cycle
- G82 Counter boring cycle

- G83 Peak drilling cycle
- G84 Tapping cycle
- G87 Back boring cycle
- G88 Boring cycle (manual return)
- G89 Boring cycle (dwell before feed return)
- G90 Specifies absolute positioning
- G91 Specifies incremental positioning
- G92 Program absolute zero point
- G98 Return to initial level
- G99 Return to reference (R) level.

MISCELLANEOUS (M) FUNCTIONS:

- M00 Program stop
- M01 Optional stop
- M02 End of program (rewind tape)
- M03 Spindle start clockwise
- M04 Spindle start counterclockwise
- M05 Spindle stop
- M06 Tool change
- M08 Coolant on
- M09 Coolant off
- M13 Spindle on clockwise, coolant on (on some systems)
- M14 Spindle on counterclockwise, coolant on
- M17 Spindle and coolant off (on some systems)
- M19 Spindle orient and stop
- M21 Mirror image X axis
- M22 Mirror image Y axis
- M23 Mirror image off
- M30 End of program, memory reset
- M41 Low range
- M42 High range
- M48 Override cancel off
- M49 Override cancel on
- M98 Jump to subroutine