Seat No.

12

GANPAT UNIVERSITY

Time: 3 Hours

Answer the following.

matrix.

Answer the following.

Answer the following.

integer.

Que-2

Que-2 Answer the following.

Define Z-transform and derive Z-transform of a^n .

Evaluate Z-transform of $(n^2 2^{-n})$.

Find $Z\{\sin n\theta\}$.

3

Attempt any two. Que-3

- 12
- Define Hermition and Skew-Hermition matrix. Show that matrix $A = \begin{bmatrix} -2i & 1+2i \\ -1+2i & i \end{bmatrix}$ is Skew-Hermition matrix and find its eigen values.
- (b) Find mult_A and mult_G for each eigen values of matrix A
- Define inverse Z-transform and evaluate inverse Z-transform of $\left\{\frac{z^3-20z}{(z-2)^3(z-4)}\right\}$.

Section-II

Oue-4 Answer the following.

- 12
- Find directional derivatives of $\emptyset = 3e^{2x-y+z}$ at A(1,1,-1) in the direction of \overrightarrow{AB} where B is the point (-3,5,6).
- (b) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 3$ at the point (2,-1,2).
- Find the unit tangent vector at any point on the curve $\bar{r} = (t^2 + 2)i + (4t 5)j + (4t 5)j$ $(2t^2 - 6t)k$. Also determine the same at the point t = 2.

OR

Que-4 Answer the following.

- 12
- Show that $\bar{F} = 2xyzi + (x^2z + 2y)j + x^2yk$ is irrotational and find its scalar potential.
- Find the direction from the point (1,1,0) which gives the greatest rate of increase of the function $\emptyset = (x + 3y)^2 + (2y - z)^2$.
- Find the divergence and curl of the vector function $\bar{F} = xyzi + 3x^2yj + (xz^2 yz)i + (xz^$ (2,-1,1).

Que-5 Answer the following.

(a) If $\overline{F} = 2i + 2zj + yk$, evaluate $\iiint_V \overline{F} dV$ where V is the region bounded by the surface $x^2 + y^2 = 9$ and the planes z = 0, z = 4.

11

11

12

- (b) Use Gauss' divergence theorem for $\overline{F} = (x^2 yz)i + (y^2 zx)j + (z^2 xy)k$ over the surface of the rectangular parallelepiped, $0 \le x \le a$, $0 \le y \le b$, $0 \le z \le c$.
- (c) Use Green's theorem evaluate $\oint_C [(xy x^2) dx + x^2y dy]$ along the closed curve C formed by y = 0, x = 1 and y = x.

OR

Que-5 Answer the following.

- (a) If V is the region bounded by the planes x = 0, y = 0, z = 0 and 2x + y + z = 2, and $\bar{F} = 2zi + yk$ then evaluate $\iiint_V \bar{F} dV$.
- (b) If $\overline{F} = (2y+3)i + xzj + (yz-x)k$, evaluate $\int_C \overline{F} \cdot d\overline{r}$ along the straight line joining (0,0,0) to (2,1,1).
- (c) Find the work done by a force yi + xj which displaces from origin to a point (i + j).

Que-6 Attempt any two.

- (a) Prove that $\nabla \cdot \left\{ r \nabla \left(\frac{1}{r^3} \right) \right\} = 3r^{-4}$
- (b) Use Gauss' divergence theorem to evaluate $\iint_S \overline{F} \cdot \hat{n} \, d\overline{s}$ where $\overline{F} = yi + xj + z^2k$ and S is the surface bounding the region $x^2 + y^2 = a^2$, z = 0 and z = h.
- (c) Verify Green's theorem for the function $\vec{F} = (x^2 + y^2)i 2xyj$ and C is the rectangle in the xy-plane bounded by y = 0, y = b, x = 0 and x = a.

END OF PAPER