Exam No.

GANPAT UNIVERSITY

M. Tech. Semester II (EC) Examination, April-June 2015 3EC201: Error Control Codes

Max. Time: 3 Hrs.]

[Max. Marks: 60

Instructions:

- 1. Attempt all questions.
- 2. Answers to the two sections must be written in separate answer books.
- 3. Figures to the **right** indicate full marks.
- 4. Assume suitable data, if necessary.
- 5. Question numbers three and six are compulsory.

SECTION-I

1	(A)	Draw the addition and multiplication tables for finite fields \mathbb{F}_3 , \mathbb{F}_4 and \mathbb{F}_5 .	0
	(B)	For any q ary code with code word length n, prove the following:	4
		i. Size of the codebook $A_q(n, 1) = q^n$ ii. Size of the codebook $A_q(n, n) = q$ OR	
1	(A)	Find any one primitive root of finite field F_{27}/x^3+2x+1 over the basic field of \mathbb{F}_3 .	4
	(B)	Let C be the ternary linear code with generator matrix G over \mathbb{F}_3 . (a) List the elements of C, (b) find the minimum distance $d(C)$ (c) How merry over the detected?	6
2	(A)	 g(x) = x³ + x² + 1, find the following: i. Find the systematic parity check matrix H for C. ii. Determine the maximum codeword M and minimum Hamming distance d, justify your answer. iii. Is C a perfect code? Justify your answer. 	6
	(B)	i. List the conjugacy classes in $GF(2^5)$ with respect to $GF(2)$.	4
		ii. What is MDS? State the condition of hamming distance for MDS code.	
		ÔR	
2	(A)	Construct the systematic cyclic codes for generator polynomial $g(x) = x^3 + x + 1$ over the finite field \mathbb{F}_2 .	6
	(B)	What are the differences between block code and convolutional code.	4
3	(A)	Construct a 3 error correcting BCH code over the finite field F_{2^4} : $F(x)/x^4 + x + 1$.	8
		· · · · · · · · · · · · · · · · · · ·	2

(B) How to find the duals of Hamming code?

Exam No.

CALL STREET STREET

SECTION II

•

		M Tant Connecter I (FC) Francisco Anni-Inno 20	
4	(A)	Draw the block and state diagram of convolutional encoder having generators as $g_1 = [1011], g_2 = [1101], g_3 = [1010]$. What is the constraint length and rate of this encoder? Draw the state diagram of this encoder.	6
	(B)	Briefly explain the distance property of convolutional codes.	4
4	(A)	For the convolutional code having generator matrix $G = [101, 111]_2$ construct the trellis diagram. If the received sequence is [11 11 00 10 01 11 11], decode using Viterbi decoding and extract the data transmitted.	8
	(B)	For the message $m(x) = \begin{bmatrix} 0 & \frac{1}{1+x} \end{bmatrix}$ state the encoder which generates catastrophic condition.	2
5	(A)	Explain the decoding of convolutional codes using BCJR algorithm.	5 🥥
	(B)	Write short note on Alamouti Codes.	5
		OR	
5	(A)	Write short note on generation of Turbo codes.	5
	(B)	Briefly explain the Stack and Fano algorithm of decoding convolutional codes.	5
6	(A)	Write short note on iterative decoding.	6
	(B)	What is interleaving? Explain some common types of interleaving used in wireless communication.	4

END OF PAPER

maily your answer