

Seat No.____

GANPAT UNIVERSITY B.Tech. Sem.-II (ALL) CBCS REGULAR EXAMINATION, APRIL-JUNE 2015 SUBJECT: 2HS102 LINEAR ALGEBRA

			B.Tech. SemII (ALL) CBCS REGULAR EXAMINATION, APRIL-JUNE 2015 SUBJECT: 2HS102 LINEAR ALGEBRA	0	
	Time: 3 hi	rs	Total marks: 60	U	
	Instruction	(2	All questions are compulsory. Write answer of each section in separate answer books. Figures to the right indicate marks of questions. Section — I		
	Que-1	Answer the following			
		(a)	Find the Eigen value and Eigen vector of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	4	
			$\begin{bmatrix} 1 & 2 & 2 \end{bmatrix}$ $2x + 2y + z = 0$	3	
		/1-1	Test for the consistency and solve the system $x-y+3z=0$		
9		(b)	Test for the consistency and solve the system $x-y+3z=0$ 2x+y-z=0		
		(c)	Find the Rank of matrix $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$	3	
			OR O		
	Que-1	Answer the following.			
	8	(a)	Find the Inverse of matrix $\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$	4	
		(b)	Check whether the given vectors are L.D. or L.I.? If L.D. then find a relation between them $x_1 = (1, -1, 1)$, $x_2 = (2, 1, 1)$, $x_3 = (3, 0, 2)$	3	
			x + y + 2z = 9		
		(c)	Test for the consistency and solve the system $2x+4y-3z=1$		
(3x + 6y - 5z = 0		
	Que-2	Ans	wer the following.		
		(a)	Verify Caley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 0 & 3 \\ 3 & 1 & -2 \end{bmatrix}$		
		(b)	Define: (1) Hermitian matrix (2) Skew- Hermitian matrix (3) Unitary Matrix		
		(c)	Prove that $\frac{1}{2}\begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$ is an unitary matrix		
			OR		
	Que-2	Ans	swer the following.		
		(a)	State the Cayley-Hamilton theorem and find A^{-1} for $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$		
		(b)	If $A = \begin{bmatrix} 2+i & 3 & -1+3i \\ -5 & i & 4-2i \end{bmatrix}$, Show that A^*A is a Hermitian matrix.		

$$\begin{bmatrix} -4 & -6 \\ 3 & 5 \end{bmatrix}$$

- (b) Attempt any two
- Express the matrix $A = \begin{bmatrix} i & -i \\ 1+i & 2 \end{bmatrix}$ as a sum of Hermitian and Skew Hermitian matrix

6

6

4

3

3

3

6

Investigate for what values of λ & μ the equations x + 2y + 3z = 10

have (i) no solution (ii) a unique solution and (iii) an infinite no of solutions

III If $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$ then using Caley Hemilton theorem prove that

$$A^5 - 3A^4 + A^3 - 7A^2 + 5A + I = 61I - 43A$$

Section - II

- Answer the following. Que-4
 - Check wheather the set $M = \left\{ \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} / a, b \in R \right\}$ is Vector space or not under the
 - operations $\begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} + \begin{bmatrix} c & 1 \\ 1 & d \end{bmatrix} = \begin{bmatrix} a+c & 1 \\ 1 & b+d \end{bmatrix}$ and $\alpha \begin{bmatrix} a & 1 \\ 1 & b \end{bmatrix} = \begin{bmatrix} \alpha a & 1 \\ 1 & \alpha b \end{bmatrix}$ **(b)** Show that the set $W = \{a_0 + a_1x + a_2x^2/a_0 + a_1 + a_2 = 0\}$ is a subspace under
 - usual addition and scalar multiplication.

- Answer the following. Que-4
 - (a) Show that $R^3 = \{(x, y, z) / x, y, z \in R\}$ is a vector space under the usual operations 6 4
 - (b) Check whether the set $W = \{(x, y, z)/y = x + z + 1\}$ is a subspace or not under usual vector addition and scalar multiplication.
- Answer the following. Que-5
 - Find Range and Kernel of linear Transformations of $T: \mathbb{R}^3 \to \mathbb{R}^2$, T(x, y, z) = (x + y, y + z) also verify the Rank — Nullity Theorem.
 - Check whether the function $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x+1,y) are L. Tor not? 3
 - Test the convergence of $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \cdots \infty$
- Que-5 Answer the following.
 - Define range and kernal also find rang and kernal of linear transformation 4 T: $R^3 \to R^2$, T(x, y, z) = (x + y, y).
 - Determine if the vectors $v_1 = (1,3,1)$, $v_2 = (2,-1,1)$ and $v_3 = (1,1,4)$ will be
 - (c) Test the convergence of $\sum_{n=2}^{\infty} \frac{1}{n \log n}$.
- (a) Express the polynomial $P=-9-7x-15x^2$ as a linear combination of $P_1=2+x+4x^2$, $P_2=1-x+3x^2$, $P_3=3+2x+5x^2$. Que-6
 - (b) Attempt any two.
 - Show that $v_1 = (1, -1, 1)$, $v_2 = (0, 1, 2)$, $v_3 = (3, 0, -1)$ forms a basis for \mathbb{R}^3 .
 - Check wheather the alternating series $\sum_{n=0}^{\infty} (-1)^n \frac{n+3}{n^2+2}$ is convergent or not?
 - Give one example of set which is not a Vector space also justify your answer.